electron absorption coefficient
简明释义
电子吸收系数
英英释义
例句
1.In this experiment, we analyzed the electron absorption coefficient 电子吸收系数 of different dyes used in organic solar cells.
在这个实验中,我们分析了用于有机太阳能电池的不同染料的电子吸收系数 电子吸收系数。
2.The study focused on the electron absorption coefficient 电子吸收系数 of various materials to determine their effectiveness in solar cells.
这项研究集中在不同材料的电子吸收系数 电子吸收系数上,以确定它们在太阳能电池中的有效性。
3.Researchers measured the electron absorption coefficient 电子吸收系数 of the semiconductor to optimize its performance.
研究人员测量了半导体的电子吸收系数 电子吸收系数以优化其性能。
4.The electron absorption coefficient 电子吸收系数 is crucial for calculating the efficiency of light absorption in thin films.
计算薄膜中光吸收效率时,电子吸收系数 电子吸收系数至关重要。
5.Understanding the electron absorption coefficient 电子吸收系数 can help improve the design of photodetectors.
理解电子吸收系数 电子吸收系数可以帮助改善光电探测器的设计。
作文
In the field of materials science and photonics, understanding how materials interact with light is crucial. One key parameter that scientists often measure is the electron absorption coefficient. This term refers to a material's ability to absorb photons, which are particles of light, as they pass through it. The electron absorption coefficient quantifies the extent to which a given material can take in light energy, and it plays a vital role in determining the optical properties of various substances. When light encounters a material, several interactions can occur, including reflection, transmission, and absorption. Among these, absorption is particularly important because it can lead to various phenomena such as heating, photochemical reactions, or even luminescence. The electron absorption coefficient is a measure of how effectively a material can convert light into other forms of energy, making it essential for applications ranging from solar energy conversion to the development of photonic devices.The electron absorption coefficient is typically expressed in units of inverse length, such as cm⁻¹. A higher value indicates that the material is more effective at absorbing light, meaning that less light will penetrate before being absorbed. For instance, metals usually exhibit high electron absorption coefficients due to their dense electron clouds, which readily interact with incoming photons. In contrast, transparent materials like glass have low electron absorption coefficients, allowing light to pass through with minimal loss.Moreover, the electron absorption coefficient can vary significantly with wavelength. This means that a material may absorb certain wavelengths of light much more effectively than others. For example, in semiconductors, the electron absorption coefficient tends to increase sharply at specific wavelengths, which corresponds to the energy levels of the electrons within the material. This phenomenon is crucial for designing optoelectronic devices, such as lasers and photodetectors, where precise control over light absorption is necessary.Understanding the electron absorption coefficient also has implications in environmental science. For example, the absorption characteristics of pollutants in water or air can help researchers assess the impact of these substances on ecosystems. By measuring the electron absorption coefficient of different contaminants, scientists can determine how much light is absorbed and, consequently, how these materials affect photosynthetic organisms or the thermal dynamics of the environment.In conclusion, the electron absorption coefficient is a fundamental concept in the study of light-matter interactions. It provides valuable insights into how materials respond to light, influencing a wide range of applications in technology and environmental science. As research continues to advance, a deeper understanding of the electron absorption coefficient will undoubtedly lead to innovations that harness the power of light in new and exciting ways.
在材料科学和光子学领域,理解材料如何与光相互作用至关重要。科学家们常常测量的一个关键参数是电子吸收系数。这个术语指的是材料在光子(即光的粒子)通过时吸收光的能力。电子吸收系数量化了给定材料吸收光能的程度,并在确定各种物质的光学特性方面发挥着重要作用。当光遇到材料时,可以发生多种相互作用,包括反射、透射和吸收。在这些相互作用中,吸收尤为重要,因为它可能导致各种现象,例如加热、光化学反应甚至发光。电子吸收系数是衡量材料将光转化为其他形式能量的有效性,因此在从太阳能转换到光子设备开发等应用中至关重要。电子吸收系数通常以逆长度单位表示,例如cm⁻¹。较高的值表明材料更有效地吸收光,这意味着在被吸收之前,光的穿透量较少。例如,金属通常表现出高的电子吸收系数,因为它们密集的电子云能够与入射光子迅速相互作用。相比之下,像玻璃这样的透明材料则具有低的电子吸收系数,允许光以最小损失穿透。此外,电子吸收系数在不同波长下可能会显著变化。这意味着某些材料可能对特定波长的光吸收效果更好。例如,在半导体中,电子吸收系数通常在特定波长处急剧增加,这与材料内电子的能级相对应。这一现象对于设计光电器件(如激光器和光探测器)至关重要,在这些设备中,精确控制光的吸收是必要的。理解电子吸收系数在环境科学中也具有重要意义。例如,污染物在水或空气中的吸收特性可以帮助研究人员评估这些物质对生态系统的影响。通过测量不同污染物的电子吸收系数,科学家可以确定有多少光被吸收,从而评估这些材料如何影响光合生物或环境的热动力学。总之,电子吸收系数是研究光与物质相互作用的基本概念。它提供了有关材料如何响应光的重要见解,影响着技术和环境科学中的广泛应用。随着研究的不断推进,对电子吸收系数的更深入理解无疑将导致利用光的力量以新的激动人心的方式进行创新。
相关单词