phyllotaxis
简明释义
英[ˌfɪləˈtæksɪs]美[ˌfɪləˈtæksɪs]
n. 叶序
复 数 p h y l l o t a x e s
英英释义
Phyllotaxis refers to the arrangement of leaves on a plant stem, which can affect light exposure and space utilization. | 叶序是指植物茎上叶子的排列方式,这可以影响光照和空间利用。 |
单词用法
叶序模式 | |
叶序研究 | |
植物中的叶序 | |
叶序排列 | |
叶序的原理 | |
叶序的重要性 | |
叶序在植物学中的作用 | |
叶序与斐波那契数列 |
同义词
叶子排列 | The phyllotaxis of the sunflower is a fascinating example of nature's design. | 向日葵的叶子排列是自然设计的迷人例子。 | |
叶子模式 | Scientists study leaf patterns to understand plant growth and development. | 科学家研究叶子模式以理解植物的生长和发育。 |
反义词
例句
1.Tang Sehong colorful bright, taste Gansu fresh mellow, the phyllotaxis (has soaked tea dregs) red bright.
汤色红艳明亮,滋味甘鲜醇厚,叶底(泡过的茶渣)红亮。
2.Tang Sehong colorful bright, taste Gansu fresh mellow, the phyllotaxis (has soaked tea dregs) red bright.
汤色红艳明亮,滋味甘鲜醇厚,叶底(泡过的茶渣)红亮。
3.The arrangement of leaves on a stem is known as phyllotaxis, or 叶序 in Chinese.
茎上叶子的排列被称为phyllotaxis,或中文的叶序。
4.Studying phyllotaxis can reveal insights into plant growth patterns, known as 叶序。
研究phyllotaxis可以揭示植物生长模式的见解,这被称为叶序。
5.The unique phyllotaxis of pine cones is an example of nature's mathematical efficiency, or 叶序。
松果独特的phyllotaxis是自然数学效率的一个例子,即叶序。
6.The Fibonacci sequence is often observed in phyllotaxis, or 叶序, of sunflower seeds.
斐波那契数列常常在向日葵种子的phyllotaxis,即叶序中观察到。
7.In botany, phyllotaxis helps us understand how plants maximize sunlight exposure, which is referred to as 叶序。
在植物学中,phyllotaxis帮助我们理解植物如何最大化阳光照射,这被称为叶序。
作文
In the study of botany, one fascinating concept that often captures the attention of scientists and nature enthusiasts alike is phyllotaxis. This term refers to the arrangement of leaves on a plant stem, which plays a crucial role in maximizing light exposure and minimizing shadowing among leaves. The intricate patterns of phyllotaxis can be observed in various species, from the spiral formations seen in sunflowers to the whorled arrangements found in some types of succulents. Understanding phyllotaxis not only enhances our appreciation for the beauty of nature but also provides insights into the evolutionary adaptations that plants have developed over millions of years.The most common forms of phyllotaxis include alternate, opposite, and whorled arrangements. In alternate phyllotaxis, leaves are staggered along the stem, allowing each leaf to receive adequate sunlight without being overshadowed by its neighbors. This pattern is beneficial for plants in dense environments where competition for light is fierce. On the other hand, opposite phyllotaxis features pairs of leaves directly across from each other, which can be seen in plants like the periwinkle. Lastly, whorled phyllotaxis involves three or more leaves growing from a single node, as seen in plants such as oleander.The mathematical aspect of phyllotaxis is equally intriguing. Many plants exhibit a Fibonacci sequence in their leaf arrangements, where each number is the sum of the two preceding ones. This sequence leads to an optimal packing of leaves around the stem, enhancing light capture. For instance, the number of spirals in a sunflower head often corresponds to Fibonacci numbers, creating a visually striking and efficient structure. This relationship between mathematics and nature exemplifies how phyllotaxis is not merely a biological phenomenon but also a manifestation of mathematical principles in the natural world.Furthermore, the study of phyllotaxis extends beyond botany into fields such as architecture and design. Architects and designers often look to nature for inspiration, and the efficient arrangements found in plants can inform sustainable building practices. By mimicking the principles of phyllotaxis, structures can be designed to optimize energy efficiency and resource management.In conclusion, phyllotaxis is a remarkable concept that encapsulates the intersection of biology, mathematics, and design. It represents the elegant solutions that nature has devised to solve the challenges of growth and survival. By studying phyllotaxis, we gain a deeper understanding of the natural world and the intricate relationships that govern plant life. As we continue to explore and appreciate these patterns, we not only enhance our knowledge of botany but also inspire future innovations in various fields. The beauty of phyllotaxis lies in its ability to remind us of the complexity and interconnectedness of life on Earth.
在植物学的研究中,一个常常引起科学家和自然爱好者注意的迷人概念是phyllotaxis。这个术语指的是植物茎上叶子的排列,这在最大化光照和最小化叶子之间阴影方面起着至关重要的作用。phyllotaxis的复杂模式可以在各种物种中观察到,从向日葵中看到的螺旋形态到某些类型多肉植物中的轮生排列。理解phyllotaxis不仅增强了我们对自然美的欣赏,还提供了对植物在数百万年中发展出的进化适应的洞察。phyllotaxis的最常见形式包括交替、对生和轮生排列。在交替phyllotaxis中,叶子沿着茎交错生长,使每片叶子都能获得足够的阳光,而不被邻近的叶子遮挡。这种模式对于在光照竞争激烈的密集环境中的植物是有益的。另一方面,对生phyllotaxis特征是成对的叶子直接相对生长,可以在长春花等植物中看到。最后,轮生phyllotaxis涉及三片或更多叶子从一个节点生长,如夹竹桃等植物。phyllotaxis的数学方面同样引人入胜。许多植物在其叶子排列中表现出斐波那契数列,其中每个数字是前两个数字的总和。这个数列导致叶子围绕茎的最佳包装,增强了光捕获。例如,向日葵头部的螺旋数量通常与斐波那契数对应,形成一个视觉上引人注目且高效的结构。这种数学与自然之间的关系体现了phyllotaxis不仅仅是生物现象,也是自然界中数学原理的表现。此外,phyllotaxis的研究超越了植物学,延伸到建筑和设计等领域。建筑师和设计师常常寻求自然的灵感,植物中发现的高效排列可以为可持续建筑实践提供信息。通过模仿phyllotaxis的原则,结构可以被设计成优化能源效率和资源管理。总之,phyllotaxis是一个卓越的概念,概括了生物学、数学和设计的交汇点。它代表了自然为解决生长和生存挑战所设计的优雅解决方案。通过研究phyllotaxis,我们对自然界及其支配植物生命的复杂关系有了更深刻的理解。当我们继续探索和欣赏这些模式时,我们不仅增强了对植物学的知识,还激发了未来各个领域的创新。phyllotaxis的美在于它能够提醒我们地球上生命的复杂性和相互联系。