trapezohedrons

简明释义

[ˌtræpɪzə(ʊ)ˈhiːdrən;-ˈhed-][trəˌpizoˈhedrən]

n. 偏方三八面体;偏斜方形

复 数 t r a p e z o h e d r a 或 t r a p e z o h e d r o n s

英英释义

A trapezohedron is a type of polyhedron that has trapezoidal faces, typically with two pairs of parallel edges.

梯形体是一种多面体,具有梯形面,通常有两对平行边。

单词用法

a type of trapezohedron

一种trapezohedron

the properties of trapezohedrons

trapezohedrons的性质

trapezohedrons in geometry

几何中的trapezohedrons

regular trapezohedrons

规则的trapezohedrons

irregular trapezohedrons

不规则的trapezohedrons

trapezohedrons with different bases

具有不同底面的trapezohedrons

同义词

trapezoid

梯形

The trapezoid has two parallel sides.

这个梯形有两条平行边。

trapezium

梯形(英国英语)

In British English, a trapezium refers to the same shape as a trapezoid in American English.

在英国英语中,trapezium指的是与美国英语中的trapezoid相同的形状。

quadrilateral

四边形

A quadrilateral can be any four-sided figure, including trapezoids.

四边形可以是任何四边形,包括梯形。

反义词

cubes

立方体

The building blocks of many structures are cubes.

许多结构的基本构件是立方体。

spheres

球体

Spheres are often used in design for their aesthetic appeal.

球体由于其美观常用于设计中。

例句

1.In geometry class, we learned how to calculate the volume of trapezohedrons (梯形多面体) and their surface areas.

在几何课上,我们学习了如何计算trapezohedrons(梯形多面体)的体积和表面积。

2.The teacher demonstrated how to construct trapezohedrons (梯形多面体) using paper and scissors in a fun craft activity.

老师在一个有趣的手工活动中演示了如何用纸和剪刀制作trapezohedrons(梯形多面体)。

3.The architect designed the building's roof using various shapes, including trapezohedrons (梯形多面体) to create a unique aesthetic.

建筑师设计了建筑的屋顶,使用了多种形状,包括trapezohedrons(梯形多面体),以创造独特的美感。

4.The artist used trapezohedrons (梯形多面体) as inspiration for her latest sculpture, showcasing their geometric beauty.

这位艺术家以trapezohedrons(梯形多面体)为灵感创作了她最新的雕塑,展示了它们的几何美感。

5.In the game, players can collect trapezohedrons (梯形多面体) to unlock special abilities and advance to higher levels.

在游戏中,玩家可以收集trapezohedrons(梯形多面体)以解锁特殊能力并晋级更高的关卡。

作文

In the realm of geometry, shapes and figures play a crucial role in our understanding of space and form. One particularly fascinating type of polyhedron is the trapezohedrons, which are defined by their unique structure and properties. A trapezohedron is a three-dimensional shape that has two parallel faces, known as bases, which are trapezoids. The sides connecting these bases are typically triangular or quadrilateral in form, creating an intriguing visual appeal. Understanding trapezohedrons not only enhances our grasp of geometric principles but also opens doors to various applications in mathematics, architecture, and art.To better appreciate trapezohedrons, it's essential to explore their characteristics. First, let’s consider their definition. A trapezohedron falls within the category of polyhedra, which are solid figures with flat polygonal faces. The most common type of trapezohedrons is the right trapezohedron, where the trapezoidal bases are aligned directly above one another, making it easier to visualize and calculate its volume and surface area. The volume of a trapezohedron can be calculated using the formula: Volume = (1/3) * h * (A1 + A2 + √(A1 * A2)), where h is the height between the bases, and A1 and A2 are the areas of the trapezoidal bases.The study of trapezohedrons extends beyond mere calculation. In architecture, for instance, the principles of trapezohedrons can inspire innovative designs. The unique angles and shapes of trapezohedrons allow architects to create structures that are not only aesthetically pleasing but also structurally sound. The use of trapezohedrons in design can lead to buildings that maximize space while minimizing material usage, showcasing the efficiency of geometric principles in real-world applications.Moreover, in the field of art, trapezohedrons can serve as a source of inspiration for sculptors and designers. The interplay of light and shadow on the surfaces of trapezohedrons creates dynamic visual effects that can enhance artistic expression. Artists often utilize geometric shapes to evoke emotions and provoke thought, and trapezohedrons offer a distinctive way to engage viewers through their unique forms.In conclusion, trapezohedrons are more than just mathematical constructs; they are integral to various disciplines, from mathematics to architecture and art. Their unique properties and aesthetic appeal make them a subject worth exploring. By studying trapezohedrons, we gain not only a deeper understanding of geometry but also an appreciation for how such shapes influence our world. Whether in the classroom, at a construction site, or within the confines of a gallery, trapezohedrons remind us of the beauty and complexity of the shapes that surround us, encouraging us to look closer and think deeper about the structures we encounter every day.

在几何学的领域中,形状和图形在我们理解空间和形式方面起着至关重要的作用。一个特别迷人的多面体类型是梯形体,它以其独特的结构和属性而闻名。梯形体是一种三维形状,具有两个平行的面,称为底面,它们是梯形。连接这些底面的边通常是三角形或四边形,形成了引人注目的视觉效果。理解梯形体不仅增强了我们对几何原理的掌握,还为数学、建筑和艺术等各个应用领域打开了大门。为了更好地欣赏梯形体,了解它们的特征至关重要。首先,让我们考虑它们的定义。梯形体属于多面体的类别,这些固体图形具有平坦的多边形面。最常见的梯形体类型是右梯形体,其梯形底面直接对齐,使得可视化和计算其体积和表面积变得更加容易。梯形体的体积可以使用公式进行计算:体积 = (1/3) * h * (A1 + A2 + √(A1 * A2)),其中h是底面之间的高度,而A1和A2是梯形底面的面积。对梯形体的研究超越了单纯的计算。在建筑领域,例如,梯形体的原理可以激发创新设计。梯形体独特的角度和形状使建筑师能够创建不仅美观而且结构稳固的建筑。梯形体在设计中的使用可以导致最大化空间同时最小化材料使用的建筑,展示了几何原理在现实世界应用中的效率。此外,在艺术领域,梯形体可以作为雕塑家和设计师的灵感来源。梯形体表面上的光与影的交错产生动态的视觉效果,可以增强艺术表达。艺术家们常常利用几何形状来唤起情感和引发思考,而梯形体提供了一种独特的方式来吸引观众,通过其独特的形式。总之,梯形体不仅仅是数学构造;它们在从数学到建筑和艺术等各个学科中都是不可或缺的。它们独特的属性和美学吸引力使其成为值得探索的主题。通过研究梯形体,我们不仅获得了对几何学的更深理解,也对这些形状如何影响我们的世界有了更深的欣赏。无论是在课堂上,在建筑工地,还是在画廊内,梯形体提醒我们周围形状的美丽和复杂性,鼓励我们更仔细地观察并深入思考我们每天遇到的结构。