inhomogeneous
简明释义
英[ɪnˌhəʊməˈdʒiːnɪəs]美[ˌɪnhoʊməˈdʒiːnɪəs]
adj. 不同类的;不均一的;不纯一的
英英释义
Not uniform in structure or composition; having different parts or elements. | 在结构或成分上不均匀;具有不同的部分或元素。 |
单词用法
不均匀混合物 | |
不均匀材料 | |
不均匀分布 | |
不均匀介质 | |
不均匀方程 | |
不均匀系统 |
同义词
反义词
例句
1.Small cloud depth, low cloud top height, inhomogeneous structure are the main characteristics of the precipitation cloud.
云层厚度小、云顶高度低、云系结构不均匀是此次降水云系的主要特点。
2.Monte Carlo simulation provides an alternate way to quantify the effects of inhomogeneous field gradients used in MRI and NMR.
蒙特卡罗模拟提供了一种定性研究MRI和NMR中非均匀场梯度扩散衰减的方法。
3.The shearing strain is essentially inhomogeneous flow of metal.
剪切变形的实质是金属的不均匀流动。
4.Most other inflammatory nodules showed inhomogeneous enhancement.
炎性结节以不均匀增强为主。
5.The stress-stain relation for homogeneous stage and inhomogeneous stage of deformation were obtained.
得到了均匀形变阶段和非均匀形变阶段的真应力应变关系。
6.The paper describes a finite element simulation technique of the crack growth process in the homogeneous or inhomogeneous solids.
讨论了材料断裂过程的有限元模拟技术。
7.With the increase of hydrothermal reaction temperature, the diameter of the particles accreted and size distribution forms inhomogeneous.
随着水热温度的升高,粒子的直径随之增大,而形貌和尺寸的均一性则有所降低。
8.It is of some reference value for studying inhomogeneous guide.
对研究非均匀波导问题有参考价值。
9.The inhomogeneous distribution of resources in the region has caused significant disparities in development.
该地区资源的不均匀分布导致了显著的发展差距。
10.The climate in this area is inhomogeneous, with some regions experiencing much more rainfall than others.
该地区的气候是不均匀的,有些地区的降雨量远高于其他地区。
11.Researchers noted that the inhomogeneous nature of the sample affected the experiment's outcome.
研究人员注意到样本的不均匀性影响了实验结果。
12.In statistical analysis, an inhomogeneous dataset can lead to unreliable results.
在统计分析中,不均匀的数据集可能导致不可靠的结果。
13.The material used in the construction was found to be inhomogeneous, leading to structural weaknesses.
用于施工的材料被发现是不均匀的,导致结构弱点。
作文
In the realm of science and mathematics, the term inhomogeneous refers to a system or material that is not uniform in composition or structure. This concept can be applied across various fields, including physics, engineering, and even social sciences. Understanding inhomogeneous systems is crucial for analyzing complex phenomena that cannot be simplified into homogeneous models. For instance, consider the study of materials. When scientists examine a metal alloy, they often find that its properties vary at different points within the sample. This variation is what makes the material inhomogeneous, as it does not possess the same characteristics throughout its entirety.In contrast, a homogeneous material would display consistent properties regardless of where it is sampled. The implications of working with inhomogeneous materials are significant, particularly in engineering applications. Engineers must account for these variations when designing structures or components to ensure safety and performance. For example, if an engineer were to use an inhomogeneous material without understanding its properties, the resulting structure could fail under stress due to unexpected weaknesses in certain areas.Moreover, the concept of inhomogeneous extends beyond physical materials. In mathematical terms, an inhomogeneous equation differs from a homogeneous one by having a non-zero term on one side. This distinction can lead to more complex solutions and requires different approaches for resolution. In practical applications, such as in differential equations, recognizing whether a system is inhomogeneous is vital for determining the appropriate methods for finding solutions.Social sciences also encounter inhomogeneous structures, particularly when analyzing populations or communities. For instance, a city may be described as inhomogeneous if it contains diverse neighborhoods with varying socioeconomic statuses, cultural backgrounds, and access to resources. This diversity can lead to unique challenges in urban planning and policy-making. Policymakers must understand the inhomogeneous nature of their communities to create effective strategies that address the needs of all residents, rather than applying a one-size-fits-all solution.In conclusion, the term inhomogeneous serves as a reminder of the complexity present in both the natural and social worlds. Whether dealing with materials, mathematical equations, or societal structures, recognizing the inhomogeneous aspects of these systems allows for a deeper understanding and more effective problem-solving. As we continue to explore and analyze our surroundings, embracing the concept of inhomogeneous will undoubtedly enhance our ability to innovate and adapt in an ever-changing world.
在科学和数学领域,术语inhomogeneous指的是一个系统或材料在组成或结构上不均匀。这个概念可以应用于多个领域,包括物理学、工程学,甚至社会科学。理解inhomogeneous系统对于分析复杂现象至关重要,因为这些现象无法简化为均匀模型。例如,考虑材料的研究。当科学家检查金属合金时,他们常常发现其性质在样本的不同点上有所不同。这种变化使得材料变得inhomogeneous,因为它在整体上并不具备相同的特性。相反,均匀材料在任何取样点都显示出一致的属性。在使用inhomogeneous材料时,其影响是显著的,特别是在工程应用中。工程师必须考虑这些变化,在设计结构或组件时以确保安全性和性能。例如,如果一位工程师在不了解材料属性的情况下使用了inhomogeneous材料,那么所构建的结构可能会因某些区域意外的弱点而在受力下失败。此外,inhomogeneous的概念超越了物理材料。在数学术语中,inhomogeneous方程与均匀方程的区别在于一侧有非零项。这一区别可能导致更复杂的解,并需要不同的方法来解决。在实际应用中,例如在微分方程中,识别一个系统是否为inhomogeneous对于确定寻找解决方案的适当方法至关重要。社会科学也会遇到inhomogeneous结构,尤其是在分析人口或社区时。例如,如果一个城市包含不同的邻里,具有不同的社会经济地位、文化背景和资源获取情况,则可以将其描述为inhomogeneous。这种多样性可能导致城市规划和政策制定中的独特挑战。政策制定者必须理解他们社区的inhomogeneous特性,以制定有效的策略来满足所有居民的需求,而不是采用一种适合所有人的解决方案。总之,术语inhomogeneous提醒我们自然和社会世界中存在的复杂性。无论是在处理材料、数学方程还是社会结构时,认识到这些系统的inhomogeneous方面使我们能够更深入地理解和更有效地解决问题。随着我们继续探索和分析周围环境,接受inhomogeneous的概念无疑将增强我们在不断变化的世界中创新和适应的能力。