nonequilibrium
简明释义
英[nʌnˈikwɪlɪbrɪəm]美[nʌnˈikwɪlɪbrɪəm]
n. 非平衡,不平衡
adj. 不平衡的
英英释义
单词用法
同义词
反义词
平衡 | The system reached equilibrium after a series of adjustments. | 经过一系列调整后,系统达到了平衡。 | |
稳定 | 市场的稳定对长期增长至关重要。 |
例句
1.Nonequilibrium process for cracking ethane in the manufacture of ethene is numerically investigated.
对乙烷裂解制造乙烯的非平衡过程进行了分析。
2.Nonetheless, it has real significance, since it shows the pressure on the market at nonequilibrium prices.
尽管如此,它还是有实际意义,即它显示了非均衡价格下的市场压力。
3.If one takes a nonequilibrium approach and assumes 1 is committed to such a language, it is easy to show that both 1 and 2 and presumably Mr. X!
如果把一个非平衡的方法,并假定1致力于这样一种语言,它很容易证明这两个1和2(大概X先生!)
4.Objective To investigate influence of cervical dynamic nonequilibrium on ultrastructure in nucleus pulposus of cervical intervertebral disc.
目的探讨颈椎动力平衡失调对颈椎间盘髓核组织超微结构的影响。
5.The rotational nonequilibrium phenomenon in a CW DF chemical laser was experimentally studied.
在连续波DF化学激光实验中研究了转动非平衡现象。
6.The mesoscopic transport through a quantum dot and a toroidal carbon nanotube (TCN) coupled system is investigated with the nonequilibrium Green's function technique.
应用非平衡格林函数方法研究通过环形碳纳米管—量子点耦合系统的介观输运。
7.The study of nonequilibrium thermodynamics helps us understand processes that are not in thermal equilibrium.
对非平衡热力学的研究帮助我们理解不处于热平衡的过程。
8.Many biological processes occur in nonequilibrium conditions, such as metabolic reactions.
许多生物过程发生在非平衡条件下,例如代谢反应。
9.The nonequilibrium phase transitions can lead to fascinating phenomena in materials science.
非平衡相变可以在材料科学中引发迷人的现象。
10.Understanding nonequilibrium dynamics is crucial for predicting the behavior of complex systems.
理解非平衡动力学对于预测复杂系统的行为至关重要。
11.In a nonequilibrium state, the system is constantly changing and not at rest.
在非平衡状态下,系统不断变化而不处于静止状态。
作文
In the study of physics and chemistry, the concept of nonequilibrium refers to a state in which a system is not in balance or equilibrium. This can occur in various contexts, such as thermodynamics, where a system might have gradients of temperature, pressure, or concentration that drive processes forward. For instance, consider a hot cup of coffee left on a table. Initially, the coffee is much hotter than the surrounding air. This temperature difference creates a nonequilibrium condition, as heat will flow from the coffee into the cooler air until thermal equilibrium is reached. The importance of understanding nonequilibrium states extends beyond simple examples like a cup of coffee. In biological systems, nonequilibrium dynamics are crucial for life. Cells constantly maintain nonequilibrium conditions by actively transporting ions and nutrients against concentration gradients. This process requires energy, often derived from ATP, and is vital for functions such as nerve impulse transmission and muscle contraction. Without these nonequilibrium states, cellular processes would cease, leading to the inability of organisms to survive. From a broader perspective, nonequilibrium phenomena can be observed in economics as well. Markets are rarely in perfect equilibrium; they are influenced by numerous factors, including consumer behavior, government policies, and external shocks like natural disasters. During a financial crisis, for example, panic selling may lead to a nonequilibrium state in stock prices, where they drop significantly below their intrinsic value. Understanding these nonequilibrium dynamics can help investors make informed decisions and potentially capitalize on market inefficiencies. Moreover, the study of nonequilibrium systems has led to advancements in various fields, including materials science. Researchers are exploring how nonequilibrium conditions can be utilized to create new materials with unique properties. For example, during the rapid cooling of molten metals, atoms do not have enough time to arrange themselves into a stable structure, resulting in amorphous materials. These nonequilibrium phases can exhibit extraordinary strength and flexibility compared to their crystalline counterparts. In conclusion, the concept of nonequilibrium is fundamental across multiple disciplines. Whether in the realms of physics, biology, economics, or materials science, recognizing and studying nonequilibrium states allows us to better understand the complexities of the world around us. By embracing the intricacies of nonequilibrium, we can unlock new insights and innovations that drive progress in science and technology. Therefore, it is essential for students and professionals alike to grasp the significance of nonequilibrium in their respective fields, as it plays a pivotal role in shaping our understanding of dynamic systems.
在物理学和化学的研究中,nonequilibrium(非平衡)这一概念指的是一个系统不处于平衡或均衡状态。这种情况可以发生在各种背景下,例如热力学中,系统可能存在温度、压力或浓度的梯度,这些梯度推动过程向前发展。例如,考虑一杯放在桌子上的热咖啡。最初,咖啡的温度远高于周围空气。这种温差造成了一个nonequilibrium(非平衡)条件,因为热量将从咖啡流向较冷的空气,直到达到热平衡。理解nonequilibrium(非平衡)状态的重要性超出了简单的例子,比如一杯咖啡。在生物系统中,nonequilibrium(非平衡)动力学对于生命至关重要。细胞通过主动运输离子和营养物质来不断维持nonequilibrium(非平衡)状态,以抵抗浓度梯度。这一过程需要能量,通常来自ATP,并且对神经冲动传导和肌肉收缩等功能至关重要。如果没有这些nonequilibrium(非平衡)状态,细胞过程将停止,导致生物体无法生存。从更广泛的角度来看,nonequilibrium(非平衡)现象也可以在经济学中观察到。市场很少处于完美的平衡状态;它们受到许多因素的影响,包括消费者行为、政府政策和自然灾害等外部冲击。例如,在金融危机期间,恐慌性抛售可能导致股票价格处于nonequilibrium(非平衡)状态,价格显著低于其内在价值。理解这些nonequilibrium(非平衡)动态可以帮助投资者做出明智的决策,并可能利用市场低效。此外,nonequilibrium(非平衡)系统的研究已推动了各个领域的进步,包括材料科学。研究人员正在探索如何利用nonequilibrium(非平衡)条件来创造具有独特性质的新材料。例如,在快速冷却熔融金属的过程中,原子没有足够的时间排列成稳定的结构,导致形成非晶材料。这些nonequilibrium(非平衡)相较于其晶体对手展现出卓越的强度和灵活性。总之,nonequilibrium(非平衡)这一概念在多个学科中都是基础性的。无论是在物理学、生物学、经济学还是材料科学领域,识别和研究nonequilibrium(非平衡)状态使我们能够更好地理解周围世界的复杂性。通过拥抱nonequilibrium(非平衡)的复杂性,我们可以解锁推动科学和技术进步的新见解和创新。因此,对于学生和专业人士而言,掌握nonequilibrium(非平衡)在各自领域的重要性至关重要,因为它在塑造我们对动态系统的理解中发挥着关键作用。