haplontic

简明释义

[/hæpˈlɒntɪk/][/hæpˈlɑntɪk/]

单倍性生物的

英英释义

Referring to a life cycle in which the organism is predominantly haploid, meaning it has a single set of chromosomes.

指一种生物生活周期,其中生物主要是单倍体,意味着它具有一套染色体。

单词用法

haplontic phase

单倍体阶段

haplontic generation

单倍体世代

haplontic reproduction

单倍体繁殖

haplontic algae

单倍体藻类

同义词

haploid

单倍体

The haploid stage is crucial in the life cycle of many fungi.

单倍体阶段在许多真菌的生命周期中至关重要。

monoploid

单倍型

In a monoploid organism, each chromosome is represented only once.

在单倍型生物中,每条染色体仅出现一次。

反义词

diplontic

二倍体的

In a diplontic life cycle, the dominant phase is diploid.

在二倍体生活周期中,主要阶段是二倍体。

polyploid

多倍体的

Polyploid organisms can have multiple sets of chromosomes.

多倍体生物可以拥有多套染色体。

例句

1.Haplontic life cycles are typical of the filamentous green algae.

丝状绿藻具有典型的单倍性生物的生活史。

2.Haplontic life cycles are typical of the filamentous green algae.

丝状绿藻具有典型的单倍性生物的生活史。

3.In the life cycle of certain algae, the dominant phase is the haplontic 单倍体 generation.

在某些藻类的生命周期中,主要阶段是haplontic 单倍体世代。

4.The study of haplontic 单倍体 species provides insight into early evolutionary processes.

haplontic 单倍体物种的研究为早期进化过程提供了洞察。

5.Research has shown that haplontic 单倍体 organisms can adapt more quickly to environmental changes.

研究表明,haplontic 单倍体生物能够更快适应环境变化。

6.The haplontic 单倍体 life cycle is characterized by the absence of a diploid stage.

haplontic 单倍体生命周期的特点是缺少二倍体阶段。

7.Many fungi exhibit a haplontic 单倍体 lifestyle, especially during their reproductive phase.

许多真菌在其繁殖阶段表现出haplontic 单倍体生活方式。

作文

In the study of biology, particularly in the field of botany and genetics, one often encounters various life cycle patterns exhibited by different organisms. One such pattern is known as the haplontic life cycle. This term refers to a type of organism that spends the majority of its life in a haploid state, meaning it has only one set of chromosomes. The haplontic phase is characterized by the dominance of the gametophyte generation, which produces gametes through mitosis. After fertilization, these gametes form a diploid zygote that quickly undergoes meiosis to produce new haploid spores, thus continuing the cycle. One of the most prominent examples of haplontic organisms can be found within the green algae group, particularly in species like Chlamydomonas. In these algae, the adult form is haploid, and it reproduces sexually or asexually depending on environmental conditions. When conditions are favorable, they reproduce asexually by mitotic division, leading to a rapid increase in their population. However, when faced with stressors such as nutrient depletion, they switch to sexual reproduction, forming gametes that fuse to create a zygote. This zygote then enters a dormant stage, eventually undergoing meiosis to release haploid spores, thus completing the haplontic cycle.The haplontic life cycle contrasts with the diplohaplontic cycle, where both haploid and diploid stages are multicellular. Understanding these cycles is crucial for comprehending how different organisms adapt to their environments and how they contribute to ecological systems. For example, the predominance of the haploid phase in haplontic organisms allows for rapid adaptation to changing conditions due to the quick generation times associated with haploid reproduction.Moreover, the haplontic life cycle has significant implications for evolutionary biology. The ability to switch between sexual and asexual reproduction provides genetic diversity, which can be advantageous in fluctuating environments. This flexibility may enhance survival rates and enable populations to thrive under various conditions. Additionally, studying haplontic organisms can provide insights into the evolution of more complex life forms, as researchers investigate the transition from simple unicellular organisms to more complex multicellular structures.In conclusion, the concept of haplontic life cycles is essential in understanding the reproductive strategies of certain organisms, particularly in the realm of algae and fungi. By recognizing the advantages and mechanisms behind haplontic reproduction, we can appreciate the intricate balance of life on Earth and the diverse strategies organisms employ to survive and flourish. This knowledge not only enriches our comprehension of biological processes but also highlights the importance of biodiversity in maintaining healthy ecosystems.

在生物学的研究中,特别是在植物学和遗传学领域,人们经常会遇到不同生物所表现出的各种生命周期模式。其中一种模式被称为单倍体生殖生命周期。这个术语指的是一种生物在其生命的大部分时间里处于单倍体状态,这意味着它只有一套染色体。单倍体生殖阶段的特点是配子体世代的主导地位,它通过有丝分裂产生配子。在受精后,这些配子形成一个二倍体合子,随后迅速进行减数分裂以产生新的单倍体孢子,从而继续循环。最显著的单倍体生殖生物实例可以在绿藻群体中找到,特别是在像眼虫这样的物种中。在这些藻类中,成年形式是单倍体的,并且根据环境条件,它可以进行有性或无性繁殖。当条件良好时,它们通过有丝分裂进行无性繁殖,导致其种群快速增加。然而,当面临营养耗尽等压力时,它们会转向有性繁殖,形成融合的配子以创建合子。这个合子随后进入休眠阶段,最终通过减数分裂释放单倍体孢子,从而完成单倍体生殖循环。单倍体生殖生命周期与双倍体-单倍体生命周期形成对比,在后者中,单倍体和二倍体阶段都是多细胞的。理解这些循环对于理解不同生物如何适应其环境以及它们如何对生态系统做出贡献至关重要。例如,单倍体生殖生物的单倍体阶段的主导地位使得它们能够快速适应变化的条件,因为单倍体繁殖的快速世代时间。此外,单倍体生殖生命周期对进化生物学具有重要意义。能够在有性和无性繁殖之间切换提供了遗传多样性,这在变化的环境中可能是有利的。这种灵活性可能增强生存率,使种群能够在各种条件下蓬勃发展。此外,研究单倍体生殖生物可以为我们提供关于更复杂生命形式演化的见解,因为研究人员调查从简单的单细胞生物向更复杂的多细胞结构的过渡。总之,单倍体生殖生命周期的概念对于理解某些生物的繁殖策略至关重要,特别是在藻类和真菌领域。通过认识到单倍体生殖繁殖背后的优势和机制,我们可以欣赏地球上生命的复杂平衡以及生物体为生存和繁荣所采用的多样化策略。这一知识不仅丰富了我们对生物过程的理解,还突显了生物多样性在维持健康生态系统中的重要性。