condensability
简明释义
英[kənˈdɛnsəˌbility]美[kənˈdɛn.səˌbɪl.ɪ.ti]
n. 可压缩性;可简约性
英英释义
The ability of a substance to change from a gaseous state to a liquid state under certain conditions. | 一种物质在特定条件下从气态转变为液态的能力。 |
单词用法
高凝聚性 | |
低凝聚性 | |
气体的凝聚性 | |
测量凝聚性 | |
蒸汽的凝聚性 | |
凝聚性特征 | |
凝聚性因素 | |
凝聚性指数 |
同义词
反义词
例句
1.Character: favorable Credibility, condensability, soft and elasticity, high-thermal conductivity, nature viscosity, no need extra surface bond and meet the demand of the ROHS and UL.
特点优势:高可靠性、高可压缩性,柔软兼有弹性、高导热率、天然粘性,无需额外表面粘合剂、满足rohs及UL的环境要求。
2.Character: favorable Credibility, condensability, soft and elasticity, high-thermal conductivity, nature viscosity, no need extra surface bond and meet the demand of the ROHS and UL.
特点优势:高可靠性、高可压缩性,柔软兼有弹性、高导热率、天然粘性,无需额外表面粘合剂、满足rohs及UL的环境要求。
3.Filtration velocity, filtration resistance and porosity of cake were researched, and the condensability and its index were analyzed.
对过滤速率、过滤阻力、滤饼空隙率进行了研究,分析了四种物料的滤饼可压缩性及其压缩性指数。
4.Objective To investigate the condensability of mandibular length.
目的探讨下颌骨长度的可压缩性。
5.The study of vapor pressure is crucial in determining the condensability 凝聚性 of various gases.
研究蒸气压对于确定各种气体的condensability 凝聚性至关重要。
6.Higher condensability 凝聚性 can lead to better performance in refrigeration systems.
较高的condensability 凝聚性可以提高制冷系统的性能。
7.The condensability 凝聚性 of a substance can be influenced by temperature and pressure.
物质的condensability 凝聚性可以受到温度和压力的影响。
8.In the design of heat exchangers, the condensability 凝聚性 of the working fluid affects efficiency.
在热交换器的设计中,工作流体的condensability 凝聚性会影响效率。
9.Researchers are investigating the condensability 凝聚性 of new refrigerants for environmental safety.
研究人员正在调查新制冷剂的condensability 凝聚性以确保环境安全。
作文
The concept of condensability refers to the ability of a substance to change from a gaseous state to a liquid state under certain conditions. This property is crucial in various scientific and industrial applications, particularly in the fields of chemistry and engineering. Understanding condensability can help us comprehend how different substances behave when subjected to changes in temperature and pressure. In everyday life, we encounter condensability in many forms. For instance, when we see water vapor condensing on a cold surface, such as a glass of ice water on a hot day, we are witnessing the effects of condensability in action. The warm air carries moisture, and when it comes into contact with the cold surface, the vapor loses energy and transforms into liquid droplets. This simple phenomenon illustrates the fundamental principles of condensability and its role in the water cycle. Moreover, condensability is not limited to water. Other gases, like carbon dioxide and ammonia, also exhibit this property. Each gas has its own unique condensability characteristics, which depend on their molecular structure and the intermolecular forces at play. For example, gases with stronger intermolecular forces tend to have higher condensability, making them more likely to condense into liquids at higher temperatures or pressures. In industrial processes, understanding condensability is vital for designing equipment that efficiently handles gases. For instance, in the petroleum industry, engineers must consider the condensability of hydrocarbons when designing distillation columns. These columns separate different components of crude oil based on their boiling points, and the condensability of each component influences how effectively they can be separated. Additionally, in environmental science, the concept of condensability plays a significant role in understanding climate change. As greenhouse gases accumulate in the atmosphere, their condensability affects cloud formation and precipitation patterns. Researchers study these interactions to predict weather changes and understand the implications of global warming. In conclusion, condensability is a fundamental property that influences various natural and industrial processes. From the condensation of water vapor in our daily lives to the intricate designs of chemical processing plants, recognizing the significance of condensability allows us to appreciate the complexities of matter and its behavior. By studying this property, scientists and engineers can develop better technologies and strategies to manage resources, protect the environment, and enhance our understanding of the physical world. Thus, condensability is not just a scientific term; it is a key to unlocking the mysteries of nature and improving our technological capabilities.
“condensability”的概念指的是物质在特定条件下从气态转变为液态的能力。这个特性在化学和工程等多个科学和工业应用中至关重要。理解condensability可以帮助我们理解不同物质在温度和压力变化时的行为。在日常生活中,我们以多种形式遇到condensability。例如,当我们看到水蒸气在冷表面上凝结时,例如在炎热的天气里,冰水杯上的水珠,我们就目睹了condensability的作用。温暖的空气携带着水分,当其接触到冷表面时,蒸汽失去能量并转变为液滴。这一简单现象说明了condensability的基本原理及其在水循环中的作用。此外,condensability并不仅限于水。其他气体,如二氧化碳和氨,也表现出这种特性。每种气体都有其独特的condensability特征,这取决于它们的分子结构和分子间的相互作用力。例如,具有较强分子间作用力的气体往往具有更高的condensability,使其在较高的温度或压力下更容易凝结成液体。在工业过程中,理解condensability对于设计有效处理气体的设备至关重要。例如,在石油工业中,工程师必须考虑烃类的condensability来设计分馏塔。这些塔根据沸点分离原油的不同组分,而每个组分的condensability影响着它们被有效分离的程度。此外,在环境科学中,condensability的概念在理解气候变化方面也发挥着重要作用。随着温室气体在大气中的积累,它们的condensability影响着云的形成和降水模式。研究人员研究这些相互作用,以预测天气变化并理解全球变暖的影响。总之,condensability是影响多种自然和工业过程的基本特性。从我们日常生活中水蒸气的凝结到化工处理厂的复杂设计,认识到condensability的重要性使我们能够欣赏物质及其行为的复杂性。通过研究这一特性,科学家和工程师可以开发更好的技术和策略来管理资源、保护环境以及增强我们对物理世界的理解。因此,condensability不仅仅是一个科学术语;它是解锁自然奥秘和提高我们技术能力的关键。