helices
简明释义
n. 螺旋线(helix 的复数)
英英释义
单词用法
双螺旋 | |
α-螺旋 | |
β-螺旋 | |
DNA 螺旋 | |
蛋白质螺旋 | |
右手螺旋 |
同义词
螺旋 | DNA分子由两个交织的螺旋组成。 | ||
扭曲 | 楼梯的设计采用了优雅的螺旋形状。 | ||
卷 | 电线被紧密卷绕以便存储。 | ||
环 | 这条小路在花园中形成了几个环形。 |
反义词
直线 | The shortest distance between two points is a straight line. | 两点之间最短的距离是直线。 | |
平面 | The architect designed the building with flat surfaces to create a modern look. | 建筑师设计了这个建筑,采用平面造型以创造现代感。 |
例句
1.There were 21 coils, 17 helices and 6 strands in the secondary structure of the protein.
对氨基酸序列进行二级结构分析,结果显示其含有21个卷曲,17个螺旋,6个折叠股。
2.Various helical rich protein structure models will be used to reveal the properties of protein helices.
不同富含螺旋的蛋白质结构模型将会用来展现蛋白质螺旋的特性。
3.Temperature oscillations or chemical changes should cause complete double helices to come apart, each then rebuilding the whole as fresh nucleotides link on.
温度和化学变化会使双股链分解,然后各核苷酸再重新形成整体继续连接。
4.RNA molecules form double stranded helices, just as do DNA molecules, by Watson Crick pairing of nucleotides on the two complementary strands of the helix.
RNA分子能像DNA分子那样形成双链螺旋,通过沃森·克里克配对,两个螺旋的核苷链互补。
5.In winter thousands of starlings perform their murmurations round it, banking swiftly and silently in vast helices across the sky.
冬天,成千上万支欧掠鸟在它旁边低沉的吟唱,静静地在浩瀚的天空中划出一道道弧线。
6.Moreover, the conformation of DNA changes and the helices are kinked.
同时DNA发生构象变化、螺旋扭结。
7.Alpha helices in biological materials, and design of alpha-helical structures.
在生物材料中的阿尔发螺旋,以及阿尔发螺旋结构的设计。
8.In the present representation this crystal would correspond to a parallel array of helices.
在这种表示法中,晶体应相当于许多螺旋线的平行排列。
9.Spines are common, as are spots, helices, and stripes.
虫卵上通常会有突刺、斑点、螺纹和条纹。
10.The helices in this protein play a key role in its functionality.
该蛋白质中的螺旋在其功能中起着关键作用。
11.We can observe various types of helices in nature, from the shape of galaxies to the structure of shells.
我们可以在自然界中观察到各种类型的螺旋,从星系的形状到贝壳的结构。
12.The structure of DNA consists of two intertwined strands that form a double helices.
DNA的结构由两条交织的链组成,形成一个双螺旋。
13.The research focused on how helices stabilize the overall structure of the molecule.
研究集中于螺旋如何稳定分子的整体结构。
14.In molecular biology, understanding the formation of helices is crucial for studying protein structures.
在分子生物学中,理解螺旋的形成对于研究蛋白质结构至关重要。
作文
In the realm of biology and chemistry, the term helices (螺旋) often comes into play when discussing the structure of molecules. One of the most well-known examples of helices is found in the double helix structure of DNA, which was famously described by James Watson and Francis Crick in 1953. This groundbreaking discovery not only shaped our understanding of genetics but also opened the door to numerous advancements in molecular biology. The helices (螺旋) in DNA are formed by two strands that wind around each other, resembling a twisted ladder. Each rung of this ladder consists of paired nitrogenous bases, which are crucial for encoding genetic information.The significance of helices (螺旋) extends beyond DNA. In proteins, certain sequences of amino acids can fold into helices (螺旋) as well, particularly the alpha helix structure. This structural motif is essential for the stability and function of many proteins. For instance, keratin, a protein found in hair and nails, is rich in alpha helices (螺旋), providing strength and resilience. Understanding these structures helps scientists design drugs and therapies that target specific proteins, enhancing their effectiveness.Moreover, helices (螺旋) are not limited to biological sciences; they also appear in various fields of engineering and architecture. The spiral staircase is a classic example of how helices (螺旋) can be utilized in design, allowing for efficient use of space while providing aesthetic appeal. In aerospace engineering, the design of propellers and rotor blades often incorporates helices (螺旋) to optimize performance and efficiency.In conclusion, the concept of helices (螺旋) is multifaceted, bridging the gap between biology, chemistry, engineering, and design. By studying helices (螺旋), we gain insights into the fundamental principles that govern life and innovation. As research continues to evolve, the importance of understanding helices (螺旋) will undoubtedly grow, paving the way for new discoveries and applications across various disciplines.
在生物学和化学领域,术语helices(螺旋)通常在讨论分子结构时出现。一个最著名的helices(螺旋)例子是DNA的双螺旋结构,这一结构在1953年由詹姆斯·沃森和弗朗西斯·克里克首次描述。这一突破性发现不仅塑造了我们对遗传学的理解,还为分子生物学的众多进展打开了大门。DNA中的helices(螺旋)由两条链相互缠绕而成,类似于一把扭曲的梯子。这把梯子的每一个横档由配对的氮碱基组成,这对编码遗传信息至关重要。helices(螺旋)的意义不仅限于DNA。在蛋白质中,某些氨基酸序列也可以折叠成helices(螺旋),特别是α-螺旋结构。这种结构特征对于许多蛋白质的稳定性和功能至关重要。例如,角蛋白是一种存在于头发和指甲中的蛋白质,富含α-helices(螺旋),提供强度和韧性。理解这些结构有助于科学家设计针对特定蛋白质的药物和疗法,提高其有效性。此外,helices(螺旋)不仅限于生物科学,它们还出现在工程和建筑的各个领域。螺旋楼梯是如何利用helices(螺旋)进行设计的经典例子,它允许高效利用空间,同时提供美学吸引力。在航空航天工程中,螺旋桨和旋翼叶片的设计通常包含helices(螺旋),以优化性能和效率。总之,helices(螺旋)这一概念是多方面的,架起了生物学、化学、工程和设计之间的桥梁。通过研究helices(螺旋),我们获得了对支配生命和创新的基本原则的深入理解。随着研究的不断发展,理解helices(螺旋)的重要性无疑会增加,为各个学科的新发现和应用铺平道路。