heterochrony
简明释义
英[ˌhetəˈrɒkrəni]美[ˌhetəˈrɑːkrəni]
n. [胚] 异时性
英英释义
Heterochrony refers to the variation in the timing of developmental events, leading to changes in size and shape of organisms. | 异时性是指发育事件时间的变化,导致生物体大小和形状的改变。 |
单词用法
发育异时性 | |
进化异时性 | |
异时性变化 | |
进化中的异时性 | |
异时性研究 | |
异时性的概念 |
同义词
反义词
同时性 | In biological terms, homochrony refers to the occurrence of developmental events at the same time across different species. | 在生物学中,同时性指的是不同物种之间发育事件同时发生的情况。 |
例句
1.Phylogeny Studies of heterochrony are built upon the phylogenetic assumptions used.
异时性的系统发育研究是建立在系统发育假设的基础上的。
2.Phylogeny Studies of heterochrony are built upon the phylogenetic assumptions used.
异时性的系统发育研究是建立在系统发育假设的基础上的。
3.Three basic processes are heterochrony, heterotopy, and heteromorphy.
三个基本的过程是异时性、异托位和异态。
4.The concept of heterochrony is crucial in understanding how different species evolve at varying rates.
理解不同物种以不同速率进化的概念是异时性至关重要的。
5.In developmental biology, heterochrony can explain why some organisms mature faster than others.
在发育生物学中,异时性可以解释为什么某些生物的成熟速度快于其他生物。
6.Researchers are studying heterochrony to understand the evolution of limb structures in vertebrates.
研究人员正在研究异时性以理解脊椎动物肢体结构的进化。
7.Some amphibians exhibit heterochrony by retaining juvenile features into adulthood.
一些两栖动物通过在成年期保留幼年特征来表现出异时性。
8.The differences in flowering times among plant species can be attributed to heterochrony.
植物物种之间开花时间的差异可以归因于异时性。
作文
In the study of evolutionary biology, the concept of heterochrony plays a crucial role in understanding how developmental timing can influence the evolution of species. Heterochrony refers to changes in the timing of developmental events, leading to alterations in size and shape during the life cycle of an organism. This phenomenon can occur in various forms, including paedomorphosis, where juvenile traits are retained in adults, and peramorphosis, where adults exhibit traits that are typically seen in the offspring of their ancestors. These changes can result from genetic mutations, environmental pressures, or a combination of both, and they have significant implications for the adaptability and survival of species.One of the most striking examples of heterochrony is found in the domestication of animals. Take dogs, for instance; they are believed to have descended from wolves. Through selective breeding, humans favored traits such as smaller size, floppy ears, and a more playful demeanor—traits that are typically associated with juvenile wolves. This process illustrates how heterochrony can lead to significant morphological changes over generations, allowing domesticated animals to thrive in human environments while retaining some juvenile characteristics.Furthermore, heterochrony is not limited to animals; it is also evident in plant development. For example, some flowering plants may exhibit changes in the timing of their flowering phases due to environmental factors like climate change. Such shifts can affect pollination and reproduction, ultimately influencing the plant's evolutionary trajectory. Understanding heterochrony in plants helps researchers predict how species might adapt to changing environments and informs conservation efforts aimed at preserving biodiversity.The implications of heterochrony extend beyond individual species; they can influence entire ecosystems. When one species undergoes a significant developmental change, it can impact its interactions with other organisms, such as predators, prey, and competitors. For example, if a predator evolves to mature more quickly due to heterochrony, it may exert increased pressure on prey populations, potentially leading to cascading effects throughout the food web. Thus, studying heterochrony is vital for ecologists and conservationists who seek to understand and manage the complexities of ecosystems.Moreover, the study of heterochrony provides insights into the mechanisms of evolution itself. It raises questions about how developmental processes are regulated and how these processes can be altered over time. By examining the genetic and environmental factors that contribute to heterochrony, scientists can gain a deeper understanding of evolutionary pathways and the dynamics of speciation.In conclusion, heterochrony is a fundamental concept in evolutionary biology that highlights the importance of developmental timing in shaping the morphology and behavior of organisms. Its effects can be observed across various taxa, influencing not only individual species but also entire ecosystems. As researchers continue to explore the intricacies of heterochrony, we gain valuable insights into the processes that drive evolution and the adaptability of life on Earth. This understanding is crucial in our efforts to conserve biodiversity and address the challenges posed by rapid environmental changes.
在进化生物学的研究中,概念异时性在理解发育时序如何影响物种进化方面起着至关重要的作用。异时性指的是发育事件时序的变化,导致生物体生命周期中的大小和形状发生改变。这种现象可以以多种形式出现,包括幼态保持,即成年个体保留幼年特征,以及超形态,即成年个体表现出通常在其祖先后代中看到的特征。这些变化可能是由基因突变、环境压力或两者的结合引起的,并且对物种的适应性和生存具有重要意义。一个最引人注目的异时性例子可以在动物驯化中找到。例如,狗被认为是从狼演变而来的。通过选择性繁殖,人类偏爱较小的体型、垂耳和更加顽皮的性格——这些特征通常与幼年狼相关。这个过程说明了异时性如何在几代人中导致显著的形态变化,使驯化动物能够在人的环境中生存,同时保留一些幼年特征。此外,异时性不仅限于动物;它在植物发育中也很明显。例如,一些开花植物可能由于气候变化等环境因素而表现出开花阶段时序的变化。这种变化可能影响授粉和繁殖,最终影响植物的进化轨迹。理解植物中的异时性有助于研究人员预测物种如何适应变化的环境,并为保护生物多样性提供信息。异时性的影响不仅限于单个物种;它们可以影响整个生态系统。当一个物种经历显著的发育变化时,它可能会影响与其他生物的相互作用,如捕食者、猎物和竞争者。例如,如果一种捕食者由于异时性而进化得更快成熟,它可能会对猎物种群施加更大的压力,从而可能导致整个食物网的级联效应。因此,研究异时性对于生态学家和保护主义者来说至关重要,他们寻求理解和管理生态系统的复杂性。此外,异时性的研究为进化机制提供了见解。它引发了关于发育过程如何调节以及这些过程如何随时间变化的问题。通过检查导致异时性的遗传和环境因素,科学家们可以更深入地理解进化路径和物种形成的动态。总之,异时性是进化生物学中的一个基本概念,突显了发育时序在塑造生物体形态和行为方面的重要性。它的影响可以在各种分类群中观察到,不仅影响个别物种,还影响整个生态系统。随着研究人员继续探索异时性的复杂性,我们获得了关于推动进化和生命适应地球的过程的宝贵见解。这种理解对于我们努力保护生物多样性和应对快速环境变化带来的挑战至关重要。