deoxyribose
简明释义
英[diːˌɒksɪˈraɪbəʊs]美[diˌɑːksiˈraɪboʊs]
n. [生化] 脱氧核糖
英英释义
A sugar derived from ribose by the replacement of a hydroxyl group with hydrogen, which is a component of DNA. | 一种从核糖中通过用氢替代羟基而得到的糖,是DNA的组成部分。 |
单词用法
脱氧核糖 | |
脱氧核酸(DNA) | |
脱氧核糖骨架 | |
脱氧核糖的结构 | |
DNA中的脱氧核糖 | |
脱氧核糖的合成 |
同义词
2-脱氧-D-核糖 | 脱氧核糖是DNA的糖组分。 | ||
D-核糖 | 2-deoxy-D-ribose is often used in biochemistry to study nucleic acids. | 2-脱氧-D-核糖常用于生物化学研究核酸。 |
反义词
核糖 | 核糖是合成RNA的关键糖类。 |
例句
1.And the scavenging effects of extracts on hydroxyl radical-mediated 2-deoxyribose degradation were studied.
同时评价了其对羟基自由基介导的2-脱氧核糖裂解的保护作用。
2.The most important example is DEOXYRIBOSE.
最重要的脱氧糖就是脱氧核糖。
3.The results showed that the entire DNA molecule was damaged by acetic acid including backbone phosphodiester groups, deoxyribose and base stacking.
证明了乙酸对DNA的损伤是整个分子,包括骨架磷酸基团、脱氧核糖及碱基。
4.The results showed that the entire DNA molecule was damaged by acetic acid including backbone phosphodiester groups, deoxyribose and base stacking.
证明了乙酸对DNA的损伤是整个分子,包括骨架磷酸基团、脱氧核糖及碱基。
5.The absence of an oxygen atom in deoxyribose distinguishes it from ribose, which is found in RNA.
在脱氧核糖中缺少一个氧原子,这使其与在RNA中发现的核糖区分开来。
6.Researchers studied how modifications to deoxyribose could affect DNA stability.
研究人员研究了对脱氧核糖的修改如何影响DNA的稳定性。
7.During DNA replication, deoxyribose plays a crucial role in forming the backbone of the new strand.
在DNA复制过程中,脱氧核糖在形成新链的骨架中起着关键作用。
8.In DNA, the sugar component is known as deoxyribose, which is essential for the structure of the molecule.
在DNA中,糖成分被称为脱氧核糖,这是分子结构所必需的。
9.The chemical formula for deoxyribose is C5H10O4, reflecting its structure.
脱氧核糖的化学式为C5H10O4,反映了其结构。
作文
Deoxyribose is a crucial component of DNA, the molecule that carries genetic information in all living organisms. To understand the significance of deoxyribose (脱氧核糖), one must first grasp the structure and function of DNA itself. DNA is composed of two long strands that coil around each other to form a double helix. Each strand is made up of a sequence of nucleotides, which are the building blocks of DNA. Each nucleotide consists of three components: a phosphate group, a nitrogenous base, and a sugar molecule. The sugar in DNA is deoxyribose (脱氧核糖), which differentiates it from RNA, where the sugar is ribose.The name 'deoxyribose' comes from its structure. It is a five-carbon sugar, but it lacks one oxygen atom compared to ribose, hence the prefix 'deoxy'. This small difference in structure has significant implications for the stability and function of DNA. The absence of an oxygen atom in deoxyribose (脱氧核糖) makes DNA more chemically stable than RNA, allowing it to serve as a reliable repository for genetic information over long periods.In addition to its structural role, deoxyribose (脱氧核糖) plays a vital part in the processes of replication and transcription. During DNA replication, the enzyme DNA polymerase adds new nucleotides to the growing DNA strand. This process relies on the presence of deoxyribose (脱氧核糖) to form the backbone of the DNA molecule. Similarly, during transcription, when DNA is copied into RNA, the deoxyribose (脱氧核糖) structure ensures that the correct nucleotides are incorporated.The importance of deoxyribose (脱氧核糖) extends beyond its role in DNA. It is also involved in various biochemical pathways within the cell. For instance, deoxyribose (脱氧核糖) can be phosphorylated to form deoxyribonucleotides, which are essential for DNA synthesis. These deoxyribonucleotides are then used by DNA polymerases to build new DNA strands during cell division.Moreover, the study of deoxyribose (脱氧核糖) has implications in biotechnology and medicine. Understanding how deoxyribose (脱氧核糖) functions within DNA can lead to advancements in gene therapy, where faulty genes can be repaired or replaced. Additionally, the mechanisms of DNA repair often involve deoxyribose (脱氧核糖), highlighting its role in maintaining the integrity of genetic information.In conclusion, deoxyribose (脱氧核糖) is not just a simple sugar; it is a fundamental molecule that underpins the very essence of life. Its unique structure provides the stability needed for DNA, while its involvement in critical cellular processes underscores its importance in genetics and biochemistry. As we continue to explore the complexities of molecular biology, the role of deoxyribose (脱氧核糖) will undoubtedly remain a central focus, revealing more about the intricacies of life at the molecular level.
脱氧核糖是DNA的一个关键组成部分,DNA是携带所有生物体遗传信息的分子。要理解脱氧核糖(deoxyribose)的重要性,首先必须掌握DNA本身的结构和功能。DNA由两条长链组成,这些链缠绕在一起形成双螺旋结构。每条链由一系列核苷酸构成,核苷酸是DNA的基本单位。每个核苷酸由三个部分组成:一个磷酸基团、一个氮碱基和一个糖分子。DNA中的糖是脱氧核糖(deoxyribose),这使其与RNA区分开来,后者的糖是核糖。“脱氧核糖”这个名字来源于它的结构。它是一种五碳糖,但与核糖相比缺少一个氧原子,因此有了“脱氧”的前缀。这个结构上的小差异对DNA的稳定性和功能有着重要的影响。脱氧核糖(deoxyribose)中缺少一个氧原子使得DNA比RNA更具化学稳定性,从而使其能够作为遗传信息的可靠存储库,保持较长时间。除了结构作用外,脱氧核糖(deoxyribose)在复制和转录过程中也起着至关重要的作用。在DNA复制过程中,酶DNA聚合酶将新的核苷酸添加到正在生长的DNA链上。这个过程依赖于脱氧核糖(deoxyribose)的存在,以形成DNA分子的骨架。同样,在转录过程中,当DNA被复制成RNA时,脱氧核糖(deoxyribose)的结构确保正确的核苷酸被整合。脱氧核糖(deoxyribose)的重要性超越了它在DNA中的角色。它还参与细胞内的各种生化途径。例如,脱氧核糖(deoxyribose)可以被磷酸化形成脱氧核苷酸,这些核苷酸对于DNA合成至关重要。这些脱氧核苷酸随后被DNA聚合酶用于在细胞分裂期间构建新的DNA链。此外,脱氧核糖(deoxyribose)的研究在生物技术和医学方面也具有重要意义。了解脱氧核糖(deoxyribose)在DNA中的功能可以推动基因治疗的发展,通过修复或替换有缺陷的基因。此外,DNA修复的机制通常涉及脱氧核糖(deoxyribose),突显了它在维护遗传信息完整性方面的作用。总之,脱氧核糖(deoxyribose)不仅仅是一种简单的糖;它是支撑生命本质的基本分子。它独特的结构为DNA提供了所需的稳定性,而它在细胞过程中的参与则突显了其在遗传学和生物化学中的重要性。随着我们继续探索分子生物学的复杂性,脱氧核糖(deoxyribose)的角色无疑将继续成为中心焦点,揭示生命在分子层面的更多复杂性。