protons
简明释义
n. [物]质子;氢核(proton 的复数)
英英释义
Protons are subatomic particles found in the nucleus of an atom, carrying a positive electrical charge. | 质子是存在于原子核中的亚原子粒子,带有正电荷。 |
单词用法
质子泵 |
同义词
核子 | 核子是原子核中发现的粒子。 | ||
带正电的粒子 | Positively charged particles like protons are essential for forming atomic nuclei. | 像质子这样的带正电粒子对形成原子核至关重要。 |
反义词
电子 | 电子是存在于原子中的带负电粒子。 | ||
中子 | Neutrons are neutral particles that reside in the nucleus of an atom. | 中子是存在于原子核中的中性粒子。 |
例句
1.An atom itself is a complete whole, with its electrons, protons and neutrons and other elements.
原子本身是个整体,含电子、质子、中子以及其他组成部分。
2.Each atomic cluster is made up of neutrons and protons.
每个原子团簇是由中子和质子组成的。
3.The only particles of positive charge known at that time were protons.
当时唯一知道的带有正电荷的粒子是质子。
4.For protons acceleration a huge amount of energy is required.
对质子加速需要大量的能源。
5.If you have 11 protons, it must be sodium.
如果有11个质子,那就是钠。
6.So, this has got protons and neutrons.
这里面有质子和中子。
7.And that was a great worry because the protons have a very different mass from the electrons.
而这是一个很大的困扰,因为质子的质量与电子相距甚远。
8.In a hydrogen atom, there is one proton (质子) in the nucleus.
在氢原子中,核内有一个proton (质子)。
9.The strong nuclear force binds protons (质子) and neutrons together in the nucleus.
强核力将核内的protons (质子) 和中子结合在一起。
10.During nuclear fusion, protons (质子) combine to form heavier elements.
在核聚变过程中,protons (质子) 结合形成更重的元素。
11.The number of protons (质子) in an atom determines its atomic number.
一个原子中的protons (质子) 数量决定了它的原子序数。
12.In a particle accelerator, scientists study the behavior of high-energy protons (质子).
在粒子加速器中,科学家研究高能protons (质子) 的行为。
作文
In the world of physics and chemistry, understanding the fundamental components of matter is crucial. One such component is the protons, which are positively charged particles found in the nucleus of an atom. The existence of protons plays a vital role in determining the identity of an element, as the number of protons in an atom's nucleus defines which element it is. For instance, hydrogen has one proton, while helium has two. This distinction is essential for categorizing elements on the periodic table.The concept of protons was first introduced in the early 20th century when scientists began to understand atomic structure. Before this discovery, the idea of atoms being composed of smaller particles was still a mystery. However, with the advent of advanced experimental techniques, researchers were able to identify protons as a key component of atomic nuclei. This revelation paved the way for further exploration into the nature of atoms and their interactions.One of the most interesting aspects of protons is their role in chemical reactions. The number of protons in an atom affects its charge and, consequently, its ability to bond with other atoms. For example, when atoms share or transfer protons during chemical reactions, they form ions, which can lead to the creation of various compounds. This process is fundamental to both organic and inorganic chemistry.Moreover, protons are not just significant in chemistry; they also have applications in various fields, including medicine and technology. In medical imaging, for example, proton magnetic resonance imaging (MRI) utilizes the behavior of protons in a magnetic field to create detailed images of the human body. This technique has revolutionized diagnostics, allowing doctors to visualize internal structures without invasive procedures.In addition to their medical applications, protons are also crucial in the field of nuclear energy. Nuclear reactors rely on the fission of heavy atoms, where the interaction of protons and neutrons leads to the release of a significant amount of energy. This energy can then be harnessed to produce electricity, demonstrating the importance of protons not only in understanding atomic structure but also in practical applications that impact our daily lives.Furthermore, the study of protons extends beyond traditional physics and chemistry. In particle physics, scientists explore the properties and behaviors of protons at high energies. Experiments conducted in particle accelerators, such as the Large Hadron Collider, investigate the fundamental forces that govern the interactions between protons and other subatomic particles. These studies enhance our understanding of the universe and the fundamental laws of nature.In conclusion, protons are indispensable components of matter that influence a wide range of scientific disciplines. From defining elements in chemistry to playing critical roles in medical imaging and nuclear energy, the significance of protons cannot be overstated. As we continue to explore the mysteries of the universe, the study of protons will undoubtedly remain at the forefront of scientific research, providing insights that deepen our understanding of the building blocks of matter.
在物理和化学的世界中,理解物质的基本组成部分至关重要。其中一个组成部分是质子,它是带正电的粒子,存在于原子的原子核中。质子的存在在决定元素的身份方面发挥着重要作用,因为原子核中质子的数量定义了它是哪种元素。例如,氢有一个质子,而氦有两个。这一区别对于在周期表上对元素进行分类至关重要。质子的概念是在20世纪初首次提出的,当时科学家们开始理解原子结构。在这一发现之前,原子由较小粒子组成的想法仍然是一个谜。然而,随着先进实验技术的出现,研究人员能够识别出质子作为原子核的关键组成部分。这一发现为进一步探索原子的性质及其相互作用铺平了道路。质子的一个有趣方面是它们在化学反应中的作用。原子中质子的数量影响其电荷,从而影响其与其他原子结合的能力。例如,当原子在化学反应中共享或转移质子时,它们形成离子,这可能导致各种化合物的生成。这个过程对有机和无机化学都是基础。此外,质子不仅在化学中具有重要意义;它们在医学和技术等各个领域也有应用。例如,在医学成像中,质子磁共振成像(MRI)利用质子在磁场中的行为来创建人体的详细图像。这项技术彻底改变了诊断,使医生能够在不进行侵入性程序的情况下可视化内部结构。除了医学应用外,质子在核能领域也至关重要。核反应堆依赖重原子的裂变,其中质子和中子之间的相互作用导致释放大量能量。这种能量可以被利用来产生电力,展示了质子在理解原子结构和影响我们日常生活的实际应用中的重要性。此外,质子的研究超越了传统的物理和化学。在粒子物理学中,科学家们探索高能状态下质子的性质和行为。在粒子加速器中进行的实验,例如大型强子对撞机,研究质子与其他亚原子粒子之间相互作用的基本力。这些研究增强了我们对宇宙及自然基本法则的理解。总之,质子是不可或缺的物质组成部分,对广泛的科学学科产生影响。从定义化学中的元素到在医学成像和核能中发挥关键作用,质子的重要性不容小觑。随着我们继续探索宇宙的奥秘,对质子的研究无疑将继续处于科学研究的前沿,提供深入理解物质基本构建块的见解。