spectrometric
简明释义
英[ˌspektrəʊˈmetrɪk]美[spektroʊˈmetrɪk]
adj. 光谱测定的;度谱的;分光仪的;能谱仪的
英英释义
Relating to or involving the measurement of spectra, especially in the context of analyzing the interaction of light with matter. | 与光谱的测量相关或涉及的,特别是在分析光与物质相互作用的上下文中。 |
单词用法
光谱分析 | |
光谱测量 | |
光谱技术 | |
光谱数据 | |
光谱方法 | |
光谱仪器 |
同义词
反义词
例句
1.Objective: to develop an atomic fluorescence spectrometric method of determining Cd in juice beverages.
目的:建立原子荧光光谱法测定果汁饮料中镉的检测方法。
2.The best predigestion way of urine mercury using cold atomic absorption spectrometric is constant temperature digestion.
结论冷原子吸收法测定尿汞的消化方法以恒温消化法为最佳选择。
3.A flow injection on-line adsorptive preconcentration system with a knotted reactor (KR) for flame atomic absorption spectrometric (FAAS) determination of trace lead was developed.
本文研究了流动注射在线编结反应器吸附预富集火焰原子吸收测定痕量铅的体系。
4.Both flame atomic absorption spectrometric methods for rapid determination of zinc in polymerized rosin with suspension technique and emulsification technique have been established.
用乙二醇配制样品空白溶液,建立了悬浮液技术及乳化技术处理样品,快速测定聚合松香中锌的火焰原子吸收光谱(FAAS)法。
5.Rubber. Identification. Infra - red spectrometric method.
橡胶。识别。红外线光谱测定法。
6.Recovery test and sample analysis show the good correlation with the critical spectrometric methods.
回收率试验及实际试样分析的结果均与传统的分光光度法相仿。
7.An algorithm for resolution of overlapping gas chromatographic-mass spectrometric(GC-MS) signal using continuous wavelet transform-pure variable approach(CWT-PVA) was proposed.
提出了连续小波变换-纯变量法(CWT-PVA)解析气相色谱-质谱(GC-MS)重叠信号的新方法。
8.The regular mass spectrometric pattern of the TMS derivatives of sterols was studied using mass spectrometry and some TMS derivatives standards.
通过推测甾醇TMS衍生物特殊碎片的质谱裂解规律,结合标准品TMS衍生物的质谱图进行分析。
9.Researchers employed spectrometric methods to identify the different pigments in the painting.
研究人员采用光谱测定方法识别画作中的不同颜料。
10.The lab used spectrometric techniques to analyze the chemical composition of the soil.
实验室使用光谱测定技术分析土壤的化学成分。
11.The team developed a new spectrometric technique for detecting trace amounts of drugs in blood.
团队开发了一种新的光谱测定技术,用于检测血液中微量药物。
12.The spectrometric analysis revealed the presence of heavy metals in the water sample.
该光谱测定分析揭示了水样中重金属的存在。
13.Using spectrometric measurements, scientists were able to determine the age of the archaeological artifacts.
通过光谱测定测量,科学家能够确定考古文物的年龄。
作文
Spectrometric techniques have revolutionized the field of analytical chemistry, allowing scientists to analyze the composition of substances with remarkable precision. The term spectrometric (光谱测定的) refers to methods that measure the interaction of light with matter to determine various properties of a sample. These techniques are essential in a wide range of applications, from environmental monitoring to pharmaceutical development.One of the most common spectrometric (光谱测定的) methods is mass spectrometry, which measures the mass-to-charge ratio of ions. This technique is particularly valuable for identifying and quantifying molecules in complex mixtures. For instance, in drug development, researchers can use mass spectrometry to analyze the metabolic pathways of compounds, ensuring that new drugs are both effective and safe for human use.Another widely used spectrometric (光谱测定的) technique is infrared (IR) spectroscopy. This method involves measuring the absorption of infrared light by a sample, which provides information about the molecular structure and functional groups present. IR spectroscopy is especially useful in organic chemistry, where it helps chemists identify unknown compounds and verify the purity of synthesized products.Ultraviolet-visible (UV-Vis) spectroscopy is another important spectrometric (光谱测定的) technique. It measures the absorption of ultraviolet and visible light by a sample, allowing scientists to study the electronic transitions of molecules. This technique is often employed in biochemistry to analyze nucleic acids and proteins, as these biomolecules exhibit distinct absorbance patterns that can be correlated with their concentrations in solution.The versatility of spectrometric (光谱测定的) techniques extends beyond chemistry; they are also widely used in fields such as environmental science and materials science. For example, in environmental monitoring, spectrometric (光谱测定的) methods can detect trace levels of pollutants in air, water, and soil, helping to assess the health of ecosystems and ensure compliance with regulatory standards.In materials science, spectrometric (光谱测定的) techniques like X-ray diffraction (XRD) provide insights into the crystalline structure of materials. Understanding the arrangement of atoms within a solid can lead to advancements in material design, impacting everything from electronics to renewable energy technologies.Despite the advantages of spectrometric (光谱测定的) techniques, there are challenges that researchers must overcome. One significant issue is the need for proper calibration and validation of instruments to ensure accurate results. Additionally, the interpretation of spectrometric (光谱测定的) data can be complex and often requires specialized knowledge and software to analyze the results effectively.In conclusion, spectrometric (光谱测定的) techniques play a crucial role in modern science, providing powerful tools for analyzing the composition and properties of various substances. As technology continues to advance, we can expect even more innovative spectrometric (光谱测定的) methods to emerge, further enhancing our ability to understand and manipulate the world around us. The ongoing development of these techniques will undoubtedly lead to significant breakthroughs across multiple disciplines, ultimately benefiting society as a whole.
光谱测定技术已经彻底改变了分析化学领域,使科学家能够以显著的精确度分析物质的成分。术语spectrometric(光谱测定的)指的是测量光与物质相互作用的方法,以确定样品的各种性质。这些技术在从环境监测到制药开发的广泛应用中至关重要。最常见的spectrometric(光谱测定的)方法之一是质谱法,它测量离子的质量与电荷比。这项技术对于识别和定量复杂混合物中的分子特别有价值。例如,在药物开发中,研究人员可以使用质谱法分析化合物的代谢途径,确保新药既有效又对人类安全。另一种广泛使用的spectrometric(光谱测定的)技术是红外(IR)光谱法。该方法涉及测量样品对红外光的吸收,这提供了有关分子结构和存在的官能团的信息。红外光谱法在有机化学中尤其有用,帮助化学家识别未知化合物并验证合成产品的纯度。紫外-可见(UV-Vis)光谱法是另一种重要的spectrometric(光谱测定的)技术。它测量样品对紫外光和可见光的吸收,使科学家能够研究分子的电子跃迁。这项技术通常在生物化学中应用于分析核酸和蛋白质,因为这些生物分子表现出独特的吸收模式,可以与其在溶液中的浓度相关联。spectrometric(光谱测定的)技术的多功能性不仅限于化学;它们在环境科学和材料科学等领域也得到广泛应用。例如,在环境监测中,spectrometric(光谱测定的)方法可以检测空气、水和土壤中微量污染物,帮助评估生态系统的健康状况并确保遵守监管标准。在材料科学中,spectrometric(光谱测定的)技术如X射线衍射(XRD)提供了材料晶体结构的深入见解。理解固体内原子的排列可以导致材料设计的进步,影响从电子到可再生能源技术的各个方面。尽管spectrometric(光谱测定的)技术具有优势,但研究人员必须克服一些挑战。一个重大问题是需要适当校准和验证仪器,以确保结果的准确性。此外,spectrometric(光谱测定的)数据的解释可能很复杂,通常需要专业知识和软件来有效分析结果。总之,spectrometric(光谱测定的)技术在现代科学中发挥着关键作用,为分析各种物质的成分和性质提供了强大的工具。随着技术的不断进步,我们可以期待出现更多创新的spectrometric(光谱测定的)方法,进一步增强我们理解和操控周围世界的能力。这些技术的持续发展无疑将导致多个学科的重大突破,最终使整个社会受益。