calculuses
简明释义
英[kælˈkjʊləsɪz]美[kælˈkjuləsɪz]
n. [数]微积分;演算;[病理]结石(calculus 的复数)
英英释义
Calculuses refers to the plural form of calculus, which is a branch of mathematics that deals with rates of change and the accumulation of quantities. | Calculuses是微积分的复数形式,微积分是数学的一个分支,涉及变化率和数量的累积。 |
单词用法
积分学 | |
微分;微分学 |
同义词
反义词
不确定性 | The project was filled with uncertainty due to the lack of clear guidelines. | 由于缺乏明确的指导方针,该项目充满了不确定性。 | |
混乱 | 在混乱时期,很难找到明确的方向。 |
例句
1.Understanding the concepts behind calculuses 微积分 is crucial for advanced mathematics courses.
理解calculuses 微积分背后的概念对于高级数学课程至关重要。
2.The professor explained how calculuses 微积分 is used in physics to calculate motion and forces.
教授解释了如何在物理学中使用calculuses 微积分来计算运动和力。
3.I often use online resources to help me solve calculuses 微积分 problems more effectively.
我经常使用在线资源来帮助我更有效地解决calculuses 微积分问题。
4.Many engineering programs require students to take multiple courses in calculuses 微积分 to understand the fundamentals of the field.
许多工程专业要求学生修读多门calculuses 微积分课程,以理解该领域的基础知识。
5.In college, I struggled with my calculuses 微积分 class, but I eventually found a good tutor.
在大学里,我在我的calculuses 微积分课上遇到困难,但我最终找到了一个好的辅导老师。
作文
Calculus is a branch of mathematics that focuses on the study of change and motion. It has two main branches: differential calculus and integral calculus. Differential calculus deals with the concept of the derivative, which represents the rate of change of a quantity. Integral calculus, on the other hand, is concerned with the accumulation of quantities, such as areas under curves. The importance of calculuses (微积分) cannot be overstated, as it provides the foundation for many scientific and engineering disciplines. In our daily lives, we often encounter situations that can be analyzed using calculuses (微积分). For instance, when we drive a car, we are constantly changing our speed and direction. By applying the principles of differential calculus, we can understand how our velocity changes over time. Similarly, when we calculate the distance traveled over a certain period, we utilize integral calculus to find the total distance covered by integrating our speed over time.The applications of calculuses (微积分) extend far beyond simple motion analysis. In physics, calculuses (微积分) is essential for understanding concepts such as acceleration, force, and energy. Engineers use calculuses (微积分) to design structures, analyze systems, and optimize performance. In economics, calculuses (微积分) helps in modeling cost functions and maximizing profits. Furthermore, in biology, calculuses (微积分) can be used to model population growth and the spread of diseases.One of the most fascinating aspects of calculuses (微积分) is its ability to provide precise answers to complex problems. For example, the area under a curve can be calculated using integral calculus, allowing mathematicians and scientists to determine quantities that are otherwise difficult to measure directly. This precision makes calculuses (微积分) an invaluable tool in research and development across various fields.Learning calculuses (微积分) is not without its challenges. Many students find the concepts abstract and difficult to grasp at first. However, with practice and a solid understanding of the fundamental principles, anyone can master calculuses (微积分). Online resources, tutoring, and study groups can significantly enhance the learning experience, making it easier to tackle complex problems.In conclusion, calculuses (微积分) is a crucial area of mathematics that plays a significant role in both theoretical and applied sciences. Its principles are used in a wide range of fields, from physics and engineering to economics and biology. Understanding calculuses (微积分) opens up new avenues for exploration and innovation, making it a vital subject for anyone interested in pursuing a career in science or technology. As we continue to advance in these fields, the importance of calculuses (微积分) will only grow, emphasizing the need for a strong mathematical foundation in our education system.
微积分是数学的一个分支,专注于变化和运动的研究。它主要有两个分支:微分微积分和积分微积分。微分微积分处理导数的概念,代表着数量变化的速率。而积分微积分则关注数量的累积,例如曲线下的面积。calculuses(微积分)的重要性不容小觑,因为它为许多科学和工程学科提供了基础。在我们的日常生活中,我们常常遇到可以用calculuses(微积分)分析的情况。例如,当我们开车时,我们的速度和方向不断变化。通过应用微分微积分的原理,我们可以理解我们的速度如何随时间变化。同样,当我们计算在某段时间内行驶的距离时,我们利用积分微积分通过将我们的速度在时间上进行积分来找到总距离。calculuses(微积分)的应用远远超出了简单的运动分析。在物理学中,calculuses(微积分)对于理解加速度、力和能量等概念至关重要。工程师使用calculuses(微积分)来设计结构、分析系统和优化性能。在经济学中,calculuses(微积分)帮助建模成本函数并最大化利润。此外,在生物学中,calculuses(微积分)可以用于建模种群增长和疾病传播。calculuses(微积分)最引人入胜的方面之一是它能够为复杂问题提供精确答案。例如,可以使用积分微积分计算曲线下的面积,使得数学家和科学家能够确定那些难以直接测量的数量。这种精确性使得calculuses(微积分)成为研究和开发中不可或缺的工具。学习calculuses(微积分)并非没有挑战。许多学生发现这些概念起初抽象且难以理解。然而,通过练习和对基本原理的扎实理解,任何人都可以掌握calculuses(微积分)。在线资源、辅导和学习小组可以显著提升学习体验,使得解决复杂问题变得更容易。总之,calculuses(微积分)是数学的一个关键领域,在理论和应用科学中发挥着重要作用。它的原理被广泛应用于物理学、工程学、经济学和生物学等多个领域。理解calculuses(微积分)为探索和创新打开了新的途径,使其成为任何有意从事科学或技术职业的人必修的学科。随着我们在这些领域的不断进步,calculuses(微积分)的重要性只会增加,强调了我们教育系统中建立坚实数学基础的必要性。