transferase
简明释义
英[ˈtrænsfəˌreɪs]美[ˈtrænsfərˌeɪz]
[生化] 转移酶;转换酶
英英释义
An enzyme that catalyzes the transfer of a specific functional group from one molecule to another. | 一种催化特定功能基团从一个分子转移到另一个分子的酶。 |
单词用法
氨基酸转移酶 | |
核苷酸转移酶 | |
糖基转移酶 | |
转移酶活性 | |
转移酶酶 | |
由转移酶催化 |
同义词
反义词
例句
1.Transgenic turfgrass carrying the isopentenyl transferase gene showed enhanced tillering ability and extended green period under severe winter conditions.
携带异戊烯基转移酶基因的草坪草表现出分蘖力加强,严冬绿期延长;
2.Objective To explore the significance of glutathione S transferase (GST pi) in the early diagnosis of colorectal carcinoma.
目的探讨谷胱甘肽S-转移酶(GST)在大肠癌早期诊断中的价值及意义。
3.AIM: To detect the effect of Sini decoction on glutathione S-transferase (GST) mRNA expression in the ischemic myocardium.
目的:探讨四逆汤对缺血心肌谷胱甘肽s转移酶(GST)基因表达的影响。
4.The glutathion-S-transferase(GsT) activities were obviously higher than control;
谷胱甘肽-S-转移酶活力明显高于对照;
5.A glutathione S-transferase (GST) gene from cotton was introduced into tobacco by Agrobacturium-mediated leaf disk transformation method.
用农杆菌介导的叶盘转化法将一个来自棉花的谷胱甘肽s转移酶(GST)基因转化到烟草中。
6.Objective To investigate the distribution of glutathione-S-transferase T1(GSTT1) gene polymorphism in health Yao and Han nationalities of guangdong province.
目的探讨广东地区瑶族和汉族健康人群谷胱甘肽硫转移酶T1(GSTT1)基因多态性的分布。
7.Terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) technique were applied to deterimine the apoptotic cells in all the tissues mentioned above.
用脱氧核糖核酸末端转移酶介导的缺口末端标记技术(TUNEL)原位检测细胞凋亡。
8.We can conclude that the amino acid 277 locates activity region of the transferase encoded by ABO gene.
推测277位氨基酸处于ABO血型基因编码的转移酶的活性区域。
9.Objective To study the relationship of genetic polymorphisms of cytochrome P4502E1(CYP2E1) and glutathione S-transferase M1(GSTM1) with genetic susceptibility of aplastic anemia(AA).
目的探讨CYP2E1和GSTM1基因多态性与再生障碍性贫血(简称再障)遗传易感性的关系。
10.Certain transferases are involved in the synthesis of amino acids.
某些转移酶参与氨基酸的合成。
11.The enzyme known as transferase plays a crucial role in the metabolism of carbohydrates.
被称为转移酶的酶在碳水化合物的代谢中起着至关重要的作用。
12.The liver uses various transferases to detoxify harmful substances.
肝脏使用多种转移酶来解毒有害物质。
13.In biochemistry, transferase is essential for the transfer of functional groups between molecules.
在生物化学中,转移酶对于分子之间功能团的转移是必不可少的。
14.Researchers are studying how transferase activity can influence drug metabolism.
研究人员正在研究转移酶活性如何影响药物代谢。
作文
In the realm of biochemistry, enzymes play a crucial role in facilitating various biochemical reactions. One important class of enzymes is known as transferases, which are responsible for transferring specific functional groups from one molecule to another. This process is vital for numerous metabolic pathways in living organisms. For instance, transferases can transfer methyl groups, phosphate groups, or even acyl groups, thus modifying the structure and function of biomolecules. The significance of transferases can be observed in several biological processes. For example, in the synthesis of nucleotides, a type of transferase called ribonucleotide reductase plays an essential role by transferring electrons to convert ribonucleotides into deoxyribonucleotides. This conversion is critical for DNA replication and repair, highlighting how transferases contribute to genetic material maintenance and cellular integrity.Moreover, transferases are also involved in the metabolism of drugs and toxins. The liver contains various types of transferases that help in the detoxification process by adding functional groups to these substances, making them more water-soluble and easier to excrete from the body. This enzymatic activity is crucial for maintaining homeostasis and preventing the accumulation of harmful compounds.In addition to their physiological roles, transferases have significant implications in biotechnology and medicine. For instance, scientists exploit the properties of transferases to develop enzyme-linked immunosorbent assays (ELISAs), which are widely used for detecting specific proteins or antibodies in clinical samples. By harnessing the specificity and efficiency of transferases, researchers can create sensitive diagnostic tools that aid in disease detection and monitoring.Furthermore, genetic engineering techniques often involve the use of transferases to modify genes in organisms. For example, the CRISPR-Cas9 system, a revolutionary gene-editing tool, utilizes a transferase enzyme to facilitate the precise insertion or deletion of DNA sequences. This advancement opens new avenues for therapeutic interventions in genetic disorders, cancer treatment, and agricultural improvements.Despite their importance, the study of transferases poses challenges due to their complex structures and mechanisms. Researchers employ various methods, including crystallography and spectroscopy, to elucidate the functions and interactions of these enzymes. Understanding the intricacies of transferases not only enhances our knowledge of fundamental biological processes but also paves the way for innovative applications in medicine and industry.In conclusion, transferases are indispensable enzymes that facilitate the transfer of functional groups between molecules, playing critical roles in metabolism, detoxification, and biotechnology. Their diverse functions underscore the complexity of biochemical pathways and highlight the interconnectedness of life processes. As research continues to unveil the mysteries of transferases, we can expect to see further advancements in health and technology, showcasing the profound impact of these remarkable enzymes on our world.
在生物化学的领域中,酶在促进各种生化反应方面发挥着至关重要的作用。其中一种重要的酶类被称为转移酶,它们负责将特定的功能基团从一个分子转移到另一个分子。这一过程对于活生物体中的许多代谢途径至关重要。例如,转移酶可以转移甲基基团、磷酸基团,甚至酰基团,从而改变生物分子的结构和功能。转移酶的重要性可以在多个生物过程中观察到。例如,在核苷酸的合成中,一种名为核糖核苷酸还原酶的转移酶通过转移电子,将核糖核苷酸转化为脱氧核糖核苷酸,发挥着至关重要的作用。这个转化对于DNA的复制和修复至关重要,突显了转移酶在维护遗传物质和细胞完整性方面的贡献。此外,转移酶还参与药物和毒素的代谢。肝脏中含有多种类型的转移酶,帮助通过向这些物质添加功能基团来进行解毒过程,使其更具水溶性,更易于从体内排泄。这种酶的活性对于维持内稳态和防止有害化合物的积累至关重要。除了生理作用外,转移酶在生物技术和医学中也具有重要意义。例如,科学家利用转移酶的特性开发了酶联免疫吸附测定(ELISA),广泛用于检测临床样本中的特定蛋白质或抗体。通过利用转移酶的特异性和高效性,研究人员可以创建敏感的诊断工具,帮助疾病的检测和监测。此外,基因工程技术通常涉及使用转移酶来修改生物体中的基因。例如,CRISPR-Cas9系统,这一革命性的基因编辑工具,利用一种转移酶来促进DNA序列的精确插入或删除。这一进展为遗传疾病、癌症治疗和农业改良等领域的治疗干预开辟了新的途径。尽管转移酶的重要性不言而喻,但对其研究面临着复杂结构和机制的挑战。研究人员采用包括晶体学和光谱学在内的多种方法,以阐明这些酶的功能和相互作用。理解转移酶的复杂性不仅增强了我们对基本生物过程的认识,也为医学和工业的创新应用铺平了道路。总之,转移酶是不可或缺的酶,促进功能基团在分子之间的转移,在代谢、解毒和生物技术中发挥着关键作用。它们多样的功能突显了生化途径的复杂性,并强调了生命过程的相互联系。随着研究不断揭示转移酶的奥秘,我们可以期待在健康和技术方面进一步的进展,展示这些非凡酶对我们世界的深远影响。