anisotropic scattering

简明释义

各向异性散射;

英英释义

Anisotropic scattering refers to the phenomenon where particles or waves scatter in different directions with varying intensities, depending on the angle of incidence and the properties of the medium.

各向异性散射是指粒子或波在不同方向上以不同强度散射的现象,这取决于入射角和介质的特性。

例句

1.Researchers are investigating anisotropic scattering 各向异性散射 effects in biological tissues to improve imaging techniques.

研究人员正在研究生物组织中的 各向异性散射 anisotropic scattering 效应,以改善成像技术。

2.The phenomenon of anisotropic scattering 各向异性散射 can lead to varying colors in images captured by cameras under different lighting conditions.

在不同光照条件下,各向异性散射 anisotropic scattering 现象可能导致相机捕捉到的图像颜色各异。

3.In meteorology, anisotropic scattering 各向异性散射 is crucial for understanding how clouds reflect and scatter sunlight.

在气象学中,各向异性散射 anisotropic scattering 对于理解云层如何反射和散射阳光至关重要。

4.The simulation of anisotropic scattering 各向异性散射 helps in predicting how light behaves in complex environments.

各向异性散射 anisotropic scattering 的模拟有助于预测光在复杂环境中的行为。

5.The study of light interaction with materials often reveals that anisotropic scattering 各向异性散射 can significantly affect the optical properties of the medium.

对材料光相互作用的研究通常表明,各向异性散射 anisotropic scattering 可以显著影响介质的光学特性。

作文

In the realm of physics and materials science, understanding the behavior of light and other forms of radiation as they interact with various materials is crucial. One significant phenomenon that arises in this context is anisotropic scattering, which refers to the directional dependence of scattering processes. This means that when light or particles encounter a material, they do not scatter uniformly in all directions. Instead, the scattering pattern varies based on the properties of the material and the angle at which the radiation strikes it. The concept of anisotropic scattering is essential in various fields, including optics, meteorology, and even astrophysics.To grasp the implications of anisotropic scattering, consider how it affects the appearance of objects. When light strikes a surface, the way it scatters can influence our perception of color and texture. For instance, a glossy surface may reflect light in a more directed manner, causing bright highlights, while a matte surface scatters light more evenly, resulting in softer and less intense reflections. This difference in scattering behavior is due to the anisotropic nature of the materials involved, which affects how light interacts with them.In addition to visual perception, anisotropic scattering plays a critical role in the study of atmospheric phenomena. In meteorology, the scattering of sunlight by air molecules and aerosols is not uniform; it varies with the wavelength of light and the size and shape of the scattering particles. This leads to the beautiful blue color of the sky, a result of Rayleigh scattering, which is a form of anisotropic scattering. The varying angles at which light is scattered contribute to the colors we observe during sunrise and sunset, as shorter wavelengths are scattered out of view, leaving behind the warmer hues of red and orange.Furthermore, in the field of astrophysics, anisotropic scattering is crucial for understanding the behavior of light from distant stars and galaxies. When light travels through interstellar dust and gas, it undergoes scattering that is dependent on the orientation and composition of the particles it encounters. This scattering can affect the observed brightness and color of celestial objects, providing insights into the physical conditions of the universe.The implications of anisotropic scattering extend beyond natural phenomena; they also have practical applications in technology and engineering. For example, in the design of optical devices, engineers must consider how materials will scatter light to achieve desired effects, such as minimizing glare or enhancing contrast. Similarly, in the development of coatings for solar panels, understanding anisotropic scattering can lead to more efficient energy absorption by optimizing how light interacts with the panel's surface.In conclusion, anisotropic scattering is a fundamental concept that influences a wide range of scientific disciplines and practical applications. By recognizing the directional dependence of scattering processes, we can better understand the interactions between light and matter, leading to advancements in technology and deeper insights into natural phenomena. Whether we are admiring the beauty of a sunset or designing the next generation of optical devices, the principles of anisotropic scattering remain integral to our understanding of the world around us.

在物理学和材料科学领域,理解光和其他辐射形式与各种材料相互作用时的行为至关重要。在这个背景下,一个重要的现象是各向异性散射,它指的是散射过程的方向依赖性。这意味着当光或粒子遇到某种材料时,它们不会以均匀的方式向所有方向散射。相反,散射模式根据材料的性质和辐射撞击的角度而变化。各向异性散射的概念在光学、气象学甚至天体物理学等多个领域中都是至关重要的。要理解各向异性散射的影响,可以考虑它如何影响物体的外观。当光照射到表面时,其散射方式会影响我们对颜色和纹理的感知。例如,光滑的表面可能以更直接的方式反射光线,导致明亮的高光,而哑光表面则更均匀地散射光线,产生更柔和和不那么强烈的反射。这种散射行为的差异源于所涉及材料的各向异性特征,影响光与其的相互作用。除了视觉感知之外,各向异性散射在大气现象的研究中也起着关键作用。在气象学中,阳光被空气分子和气溶胶散射并不是均匀的;它随着光的波长以及散射粒子的大小和形状而变化。这导致了美丽的蓝色天空的形成,这是由于瑞利散射,这是一种各向异性散射。光线散射角度的变化使我们在日出和日落时观察到的颜色产生差异,因为较短波长的光被散射到视野之外,只留下温暖的红色和橙色。此外,在天体物理学领域,各向异性散射对于理解来自遥远恒星和星系的光行为至关重要。当光通过星际尘埃和气体传播时,它经历的散射取决于它遇到的粒子的取向和组成。这种散射会影响天体的亮度和颜色,提供关于宇宙物理条件的见解。各向异性散射的影响不仅限于自然现象;它们在技术和工程中的实际应用也同样重要。例如,在光学设备的设计中,工程师必须考虑材料如何散射光线,以实现期望的效果,例如最小化眩光或增强对比度。同样,在太阳能电池板涂层的开发中,理解各向异性散射可以通过优化光与电池板表面的相互作用,从而提高能量吸收效率。总之,各向异性散射是一个基本概念,影响着广泛的科学学科和实际应用。通过认识到散射过程的方向依赖性,我们可以更好地理解光与物质之间的相互作用,从而推动技术进步和对自然现象的更深入洞察。无论我们是在欣赏日落的美丽,还是在设计下一代光学设备,各向异性散射的原理始终是我们理解周围世界的重要组成部分。

相关单词

anisotropic

anisotropic详解:怎么读、什么意思、用法

scattering

scattering详解:怎么读、什么意思、用法