anisotropic conductivity

简明释义

1. 各向异性传导率; 2. 各向异性电导率;

英英释义

Anisotropic conductivity refers to the property of a material where its electrical or thermal conductivity varies depending on the direction of measurement.

各向异性导电性是指材料的电导或热导特性在不同测量方向上有所不同的性质。

例句

1.Finite element analysis can be used to model the effects of anisotropic conductivity 各向异性导电性 in complex geometries.

有限元分析可用于模拟复杂几何形状中各向异性导电性的影响。

2.The anisotropic conductivity 各向异性导电性 of certain polymers allows for directional charge transport.

某些聚合物的各向异性导电性允许方向性的电荷传输。

3.Researchers found that the anisotropic conductivity 各向异性导电性 of graphene enhances its performance in flexible electronics.

研究人员发现石墨烯的各向异性导电性增强了其在柔性电子设备中的性能。

4.The design of the new electronic device takes into account the anisotropic conductivity 各向异性导电性 of the materials used.

新电子设备的设计考虑了所用材料的各向异性导电性

5.In semiconductor physics, understanding anisotropic conductivity 各向异性导电性 is crucial for developing high-efficiency devices.

在半导体物理中,理解各向异性导电性对于开发高效设备至关重要。

作文

Anisotropic conductivity is a crucial concept in the fields of materials science and engineering. It refers to the directional dependence of a material's ability to conduct electricity, heat, or sound. In simpler terms, when a material exhibits anisotropic conductivity (各向异性导电性), it means that its conductive properties vary based on the direction in which the measurement is taken. This phenomenon is particularly significant in various applications, ranging from electronic devices to structural materials.To understand anisotropic conductivity (各向异性导电性) better, consider the example of graphite. Graphite is known for its excellent electrical conductivity, but this property is not uniform in all directions. When current is passed parallel to the layers of graphite, the conductivity is much higher than when the current is applied perpendicular to those layers. This difference arises because the electrons can move freely along the planes of carbon atoms, while they face more resistance when moving between the layers.The implications of anisotropic conductivity (各向异性导电性) are profound in the design of electronic components. For instance, in semiconductor devices, materials like silicon exhibit anisotropic properties that engineers must account for during fabrication. The performance of transistors and diodes can be significantly affected by the directionality of the conductive paths within these materials. By understanding and manipulating anisotropic conductivity (各向异性导电性), engineers can optimize the performance of electronic circuits, leading to faster and more efficient devices.In addition to electronics, anisotropic conductivity (各向异性导电性) plays a vital role in thermal management. Materials used in heat sinks, for example, are often designed to conduct heat away from sensitive components efficiently. If a material has high thermal conductivity in one direction but low in another, it can be strategically placed to direct heat flow where it is needed most. This property is especially important in high-performance computing environments where overheating can lead to system failures.Moreover, anisotropic conductivity (各向异性导电性) is also observed in biological tissues. For instance, nerve cells exhibit anisotropic properties, allowing for efficient signal transmission along their axons. Understanding these properties is essential for developing medical technologies, such as neural interfaces and prosthetics, that can interact more effectively with biological systems.In conclusion, anisotropic conductivity (各向异性导电性) is a fundamental characteristic of many materials that affects their performance in various applications. From enhancing the efficiency of electronic devices to improving thermal management and advancing medical technology, the understanding of this concept is imperative for scientists and engineers alike. As research continues to evolve, the ability to exploit anisotropic conductivity (各向异性导电性) will likely lead to new innovations and improved materials that can meet the demands of future technologies.

各向异性导电性是材料科学和工程领域中的一个关键概念。它指的是材料在导电、导热或导声能力上的方向依赖性。简单来说,当一种材料表现出各向异性导电性时,这意味着其导电特性会根据测量方向的不同而有所变化。这种现象在各种应用中尤为重要,从电子设备到结构材料都有涉及。为了更好地理解各向异性导电性,可以考虑石墨的例子。石墨以其优良的电导率而闻名,但这种特性并不是在所有方向上都是均匀的。当电流平行于石墨层传导时,导电性远高于当电流垂直于这些层时。这个差异产生的原因是电子可以沿着碳原子的平面自由移动,而在层与层之间移动时则会遇到更多的阻力。各向异性导电性在电子元件设计中的影响深远。例如,在半导体器件中,像硅这样的材料表现出各向异性特性,工程师在制造过程中必须考虑到这些特性。晶体管和二极管的性能可能会受到这些材料内部导电路径方向性的显著影响。通过理解和操控各向异性导电性,工程师可以优化电子电路的性能,从而制造出更快、更高效的设备。除了电子产品外,各向异性导电性在热管理中也起着至关重要的作用。用于散热器的材料,例如,通常被设计为能够有效地将热量从敏感组件中导出。如果一种材料在一个方向上具有高热导率而在另一个方向上则较低,那么可以将其战略性地放置,以引导热流到最需要的地方。这种特性在高性能计算环境中尤其重要,因为过热可能导致系统故障。此外,各向异性导电性也在生物组织中观察到。例如,神经细胞表现出各向异性特性,使得信号沿着轴突高效传播。理解这些特性对于开发医疗技术(如神经接口和假肢)至关重要,这些技术能够与生物系统更有效地互动。总之,各向异性导电性是许多材料的基本特性,影响着它们在各种应用中的性能。从提高电子设备的效率到改善热管理,再到推进医疗技术,对这一概念的理解对科学家和工程师而言都是不可或缺的。随着研究的不断发展,利用各向异性导电性的能力可能会导致新的创新和改进材料的出现,以满足未来技术的需求。

相关单词

anisotropic

anisotropic详解:怎么读、什么意思、用法

conductivity

conductivity详解:怎么读、什么意思、用法