analytic geometry

简明释义

解析几何;

英英释义

Analytic geometry, also known as coordinate geometry, is the study of geometry using a coordinate system and the principles of algebra to describe geometric figures and their properties.

解析几何,也称为坐标几何,是利用坐标系统和代数原理研究几何的学科,用于描述几何图形及其性质。

例句

1.The study of analytic geometry 解析几何 involves using coordinates to represent geometric shapes.

analytic geometry 解析几何的研究涉及使用坐标来表示几何形状。

2.Many engineering problems can be solved using principles from analytic geometry 解析几何.

许多工程问题可以通过analytic geometry 解析几何的原理来解决。

3.In computer graphics, analytic geometry 解析几何 is used to model and render shapes accurately.

在计算机图形学中,analytic geometry 解析几何用于准确建模和渲染形状。

4.Understanding analytic geometry 解析几何 is essential for advanced studies in calculus.

理解analytic geometry 解析几何对于高等微积分的学习至关重要。

5.In my mathematics class, we learned about analytic geometry 解析几何 and how it helps us understand the relationship between algebra and geometry.

在我的数学课上,我们学习了analytic geometry 解析几何,以及它如何帮助我们理解代数和几何之间的关系。

作文

Analytic geometry, also known as coordinate geometry, is a branch of mathematics that uses algebraic equations to describe geometric shapes and their properties. This field of study bridges the gap between algebra and geometry, allowing us to analyze geometric figures using numerical coordinates. The essence of analytic geometry (解析几何) lies in its ability to translate geometric problems into algebraic equations, making them easier to solve and understand. One of the fundamental concepts in analytic geometry (解析几何) is the Cartesian coordinate system, named after the French mathematician René Descartes. In this system, any point in a two-dimensional space can be represented by an ordered pair of numbers (x, y), where x represents the horizontal position and y represents the vertical position. This notation allows us to visualize and manipulate geometric shapes such as lines, circles, and polygons in a more systematic way. For example, consider the equation of a straight line in the form y = mx + b, where m is the slope and b is the y-intercept. This equation not only describes the relationship between the x and y coordinates of points on the line but also provides valuable information about the line's steepness and position in the plane. By employing analytic geometry (解析几何), we can easily determine the intersection points of two lines, the distance between points, and other critical characteristics of geometric figures. Moreover, analytic geometry (解析几何) extends beyond two dimensions. In three-dimensional space, we use a three-coordinate system (x, y, z) to represent points. This extension allows us to explore more complex shapes, such as spheres, cylinders, and planes. The equations governing these shapes become more intricate, but the underlying principles remain consistent. For instance, the equation of a sphere centered at the origin with radius r can be expressed as x² + y² + z² = r². The significance of analytic geometry (解析几何) is evident in various fields, including physics, engineering, computer graphics, and robotics. In physics, it helps describe the motion of objects and trajectories. Engineers utilize analytic geometry (解析几何) to design structures and analyze forces. In computer graphics, understanding the geometric representation of shapes is crucial for rendering images and animations. Furthermore, in robotics, analytic geometry (解析几何) plays a vital role in motion planning and navigation algorithms. In conclusion, analytic geometry (解析几何) serves as a powerful tool for understanding and solving geometric problems through algebraic methods. By providing a systematic framework for analyzing shapes and their relationships, it enables us to tackle complex mathematical challenges across various disciplines. As we continue to explore the applications of analytic geometry (解析几何), we uncover new insights and enhance our ability to model the world around us. The integration of algebra and geometry through analytic geometry (解析几何) not only enriches our mathematical toolkit but also deepens our appreciation for the beauty and intricacy of mathematics itself.

解析几何,亦称坐标几何,是一种利用代数方程来描述几何形状及其性质的数学分支。该研究领域弥合了代数与几何之间的差距,使我们能够使用数值坐标分析几何图形。解析几何的本质在于其将几何问题转化为代数方程的能力,从而使其更易于求解和理解。在解析几何中,一个基本概念是笛卡尔坐标系,以法国数学家勒内·笛卡尔的名字命名。在该系统中,二维空间中的任何点都可以用有序数对(x, y)表示,其中x代表水平位置,y代表垂直位置。这种表示法使我们能够以更系统的方式可视化和操作几何形状,如直线、圆和多边形。例如,考虑直线方程y = mx + b,其中m是斜率,b是y截距。这个方程不仅描述了直线上点的x和y坐标之间的关系,还提供了有关直线陡度和在平面中位置的宝贵信息。通过运用解析几何,我们可以轻松确定两条直线的交点、点之间的距离以及几何图形的其他重要特征。此外,解析几何超越了二维空间。在三维空间中,我们使用三坐标系统(x, y, z)来表示点。这种扩展使我们能够探索更复杂的形状,如球体、圆柱体和平面。支配这些形状的方程变得更加复杂,但基本原理保持一致。例如,位于原点且半径为r的球体方程可以表示为x² + y² + z² = r²。解析几何的重要性在各个领域中显而易见,包括物理学、工程学、计算机图形学和机器人技术。在物理学中,它帮助描述物体的运动和轨迹。工程师利用解析几何设计结构并分析力。在计算机图形学中,理解形状的几何表示对渲染图像和动画至关重要。此外,在机器人技术中,解析几何在运动规划和导航算法中起着重要作用。总之,解析几何作为一种强大的工具,通过代数方法理解和解决几何问题。它为分析形状及其关系提供了一个系统框架,使我们能够应对各个学科中的复杂数学挑战。随着我们继续探索解析几何的应用,我们发现新的见解,并增强我们对周围世界建模的能力。通过解析几何将代数与几何结合,不仅丰富了我们的数学工具箱,也加深了我们对数学本身的美丽和复杂性的欣赏。

相关单词

analytic

analytic详解:怎么读、什么意思、用法

geometry

geometry详解:怎么读、什么意思、用法