amagmatic hydrothermal system

简明释义

1. 非岩浆水热系统; 2. 无岩浆热源的水热系统;

英英释义

An amagmatic hydrothermal system is a geological setting where hydrothermal activity occurs without the presence of significant magma or volcanic activity, typically characterized by the circulation of hot water and minerals through rocks.

无岩浆热液系统是指一种地质环境,其中热液活动发生而没有显著的岩浆或火山活动,通常以热水和矿物在岩石中循环为特征。

例句

1.Geologists are mapping the amagmatic hydrothermal system 无岩浆热液系统 to assess its potential for mineral exploration.

地质学家正在绘制无岩浆热液系统的地图,以评估其矿产勘探的潜力。

2.The study of the amagmatic hydrothermal system 无岩浆热液系统 provides insights into the processes that occur beneath the Earth's surface.

无岩浆热液系统的研究为我们提供了地球表面下发生过程的见解。

3.The geothermal energy extracted from an amagmatic hydrothermal system 无岩浆热液系统 is considered sustainable and environmentally friendly.

无岩浆热液系统提取的地热能被认为是可持续和环保的。

4.Understanding the dynamics of an amagmatic hydrothermal system 无岩浆热液系统 can help predict volcanic activity in the region.

理解无岩浆热液系统的动态可以帮助预测该地区的火山活动。

5.Researchers discovered an amagmatic hydrothermal system 无岩浆热液系统 in the mid-ocean ridge, revealing unique mineral deposits.

研究人员在中洋脊发现了一个无岩浆热液系统,揭示了独特的矿物沉积。

作文

The Earth's crust is a complex environment where various geological processes occur. Among these processes, the study of hydrothermal systems provides significant insights into the planet's dynamics. One intriguing type of hydrothermal system is the amagmatic hydrothermal system, which operates without the presence of magma. Unlike traditional hydrothermal systems that are closely associated with volcanic activity and the movement of molten rock, amagmatic hydrothermal systems arise from the interaction of groundwater with hot rocks in the absence of volcanic influence. This phenomenon is particularly important for understanding mineral deposits, geothermal energy resources, and the overall geochemical processes occurring within the Earth's crust.In an amagmatic hydrothermal system, the heat required to drive the hydrothermal circulation comes from the geothermal gradient of the Earth rather than from magma. As groundwater seeps into the crust, it encounters hot rocks, which heat the water and create a buoyant flow. This heated water can dissolve minerals and transport them through fractures and porous rocks. Eventually, when this hydrothermal fluid rises to cooler areas, it can deposit minerals, leading to the formation of valuable ore deposits. Understanding the mechanisms behind amagmatic hydrothermal systems can help geologists predict where economically viable mineral resources might be located.Moreover, amagmatic hydrothermal systems can play a crucial role in the geothermal energy sector. Since they do not rely on volcanic activity, they can provide a more stable and continuous source of geothermal energy. This characteristic makes them attractive for sustainable energy development. By harnessing the heat from these systems, we can generate electricity or provide direct heating solutions, contributing to a cleaner energy future.The study of amagmatic hydrothermal systems also has implications for understanding the broader geochemical cycles on Earth. These systems can influence the distribution of elements and compounds within the crust, affecting everything from soil composition to the quality of groundwater. Additionally, by studying the interactions between hydrothermal fluids and surrounding rocks, scientists can gain insights into the history of the Earth's crust and the processes that have shaped it over millions of years.In summary, amagmatic hydrothermal systems represent a fascinating area of research within geology and earth sciences. Their unique characteristics differentiate them from more commonly studied hydrothermal systems, providing valuable information about mineral deposits, geothermal energy potential, and geochemical processes. As we continue to explore these systems, we enhance our understanding of the Earth’s dynamic processes and develop innovative solutions for resource management and sustainable energy production.

地壳是一个复杂的环境,各种地质过程在其中发生。在这些过程中,热液系统的研究为我们提供了重要的关于地球动态的见解。其中一个引人注目的热液系统类型是无岩浆热液系统,它在没有岩浆存在的情况下运作。与传统的热液系统密切相关于火山活动和熔融岩石的运动不同,无岩浆热液系统源于地下水与热岩石的相互作用,而没有火山影响。这一现象对于理解矿床、地热能源资源以及地壳内发生的整体地球化学过程尤为重要。在无岩浆热液系统中,驱动热液循环所需的热量来自地球的地热梯度,而不是来自岩浆。当地下水渗入地壳时,它会遇到热岩石,从而加热水并产生浮力流动。这种加热的水可以溶解矿物并通过裂缝和多孔岩石运输它们。最终,当这种热液体上升到较冷的区域时,它可以沉淀矿物,导致有价值的矿床的形成。理解无岩浆热液系统背后的机制可以帮助地质学家预测经济上可行的矿产资源可能位于何处。此外,无岩浆热液系统在地热能源领域也扮演着至关重要的角色。由于它们不依赖于火山活动,因此可以提供更稳定和持续的地热能源来源。这一特性使它们在可持续能源开发中具有吸引力。通过利用这些系统的热量,我们可以发电或提供直接的供热解决方案,有助于实现更清洁的能源未来。对无岩浆热液系统的研究还对理解地球上更广泛的地球化学循环具有重要意义。这些系统可以影响元素和化合物在地壳中的分布,从土壤成分到地下水质量都受到影响。此外,通过研究热液流体与周围岩石之间的相互作用,科学家可以深入了解地壳的历史及其数百万年来塑造的过程。总之,无岩浆热液系统代表了地质学和地球科学研究中的一个迷人领域。它们独特的特征使它们与更常见的热液系统区分开来,为矿床、地热能源潜力和地球化学过程提供了宝贵的信息。随着我们继续探索这些系统,我们增强了对地球动态过程的理解,并开发出资源管理和可持续能源生产的创新解决方案。

相关单词

hydrothermal

hydrothermal详解:怎么读、什么意思、用法