alternating current induced polar-ization
简明释义
交流激发极化;
英英释义
例句
1.In the study of electrochemistry, researchers often analyze the effects of alternating current induced polarization 交流电引起的极化 on ion movement in electrolytes.
在电化学研究中,研究人员经常分析交流电引起的极化 对电解质中离子运动的影响。
2.The analysis of alternating current induced polarization 交流电引起的极化 can help in designing better sensors for environmental monitoring.
分析交流电引起的极化 可以帮助设计更好的环境监测传感器。
3.The phenomenon of alternating current induced polarization 交流电引起的极化 is crucial for understanding corrosion processes in metals.
理解金属腐蚀过程时,交流电引起的极化 现象至关重要。
4.In medical applications, alternating current induced polarization 交流电引起的极化 is used to enhance the effectiveness of drug delivery systems.
在医疗应用中,交流电引起的极化 用于增强药物输送系统的有效性。
5.Engineers utilize alternating current induced polarization 交流电引起的极化 to improve the performance of batteries and fuel cells.
工程师利用交流电引起的极化 来提高电池和燃料电池的性能。
作文
The concept of alternating current induced polarization is fundamental in the field of electrical engineering and geophysics. At its core, alternating current induced polarization refers to the phenomenon where an alternating electric field induces a change in the polarization of materials, particularly conductive ones. This effect is crucial for understanding how electrical currents interact with various substances, especially in subsurface exploration and material characterization.To comprehend alternating current induced polarization, we must first grasp the principles of alternating current (AC). AC is an electric current that reverses direction periodically, contrasting with direct current (DC), which flows in a single direction. The alternating nature of AC allows it to efficiently transmit energy over long distances, making it the preferred choice for power distribution systems worldwide.When an AC voltage is applied to a conductive material, it creates an oscillating electric field. This oscillation can cause charge carriers within the material, such as electrons, to move back and forth. However, in certain materials, especially those that are not perfect conductors, this movement can lead to a phenomenon known as polarization. Polarization occurs when the charge distribution within the material becomes uneven due to the influence of the electric field.In the context of alternating current induced polarization, this polarization effect can be observed in various geological formations. For instance, when an AC signal is passed through the ground, it can induce polarization in the surrounding rocks and soil. This induced polarization can provide valuable information about the subsurface structure and composition, making it a powerful tool in geophysical surveys.One practical application of alternating current induced polarization is in mineral exploration. Geologists often utilize this technique to identify the presence of metallic ores. By analyzing the induced polarization response of the ground, they can determine the location and concentration of valuable minerals. This method is particularly useful because it allows for non-invasive exploration, minimizing environmental impact while maximizing the potential for discovery.Moreover, alternating current induced polarization has implications beyond geology. In the realm of materials science, researchers study this phenomenon to improve the performance of batteries and capacitors. By understanding how different materials respond to alternating currents, scientists can develop better energy storage solutions, enhancing the efficiency of electronic devices.In conclusion, the study of alternating current induced polarization is essential for advancing our understanding of electrical phenomena in both natural and engineered systems. Its applications range from geophysical exploration to materials development, highlighting the interconnectedness of these fields. As technology continues to evolve, the significance of alternating current induced polarization will likely grow, opening new avenues for research and innovation in energy and resource management.Understanding alternating current induced polarization not only enriches our knowledge of electrical engineering but also fosters advancements in various scientific domains, ultimately contributing to a more sustainable and efficient future.
交变电流诱导极化的概念在电气工程和地球物理学领域是基础性的。从本质上讲,交变电流诱导极化是指交变电场引起材料(尤其是导电材料)极化变化的现象。这一效应对于理解电流如何与各种物质相互作用至关重要,特别是在地下勘探和材料表征中。要理解交变电流诱导极化,首先必须掌握交变电流(AC)的原理。交流电是一种周期性改变方向的电流,与单向流动的直流电(DC)形成对比。交流电的交替特性使其能够高效地在长距离内传输能量,这使其成为全球电力分配系统的首选。当交流电压施加到导电材料上时,会产生一个振荡的电场。这种振荡可以导致材料内部的电荷载体(如电子)来回移动。然而,在某些材料中,特别是那些不是完美导体的材料中,这种运动可能会导致极化现象的发生。当电场的影响使得材料内部的电荷分布变得不均匀时,就会发生极化。在交变电流诱导极化的背景下,可以在各种地质构造中观察到这种极化效应。例如,当交流信号通过地下传播时,它可以在周围的岩石和土壤中诱导极化。这种诱导极化可以提供有关地下结构和成分的宝贵信息,使其成为地球物理勘测中的一种强大工具。交变电流诱导极化的一个实际应用是在矿产勘探中。地质学家常常利用这一技术来识别金属矿石的存在。通过分析地下的诱导极化响应,他们可以确定有价值矿物的地点和浓度。这种方法尤其有用,因为它允许非侵入性勘探,最大限度地减少环境影响,同时最大化发现的潜力。此外,交变电流诱导极化不仅限于地质学。在材料科学领域,研究人员研究这一现象以提高电池和电容器的性能。通过了解不同材料对交变电流的响应,科学家们可以开发出更好的储能解决方案,提高电子设备的效率。总之,交变电流诱导极化的研究对于推进我们对自然和工程系统中电气现象的理解至关重要。它的应用范围从地球物理勘探到材料开发,突显了这些领域之间的相互关联。随着技术的不断发展,交变电流诱导极化的重要性可能会不断增长,为能源和资源管理开辟新的研究和创新途径。理解交变电流诱导极化不仅丰富了我们对电气工程的知识,还有助于各个科学领域的进步,最终促进一个更加可持续和高效的未来。
相关单词