absorption line

简明释义

1. 吸收线; 2. 吸收谱线;

英英释义

An absorption line is a dark line in a spectrum that results from the absorption of specific wavelengths of light by a substance, typically gas, which indicates the presence of certain elements or molecules.

吸收线是光谱中的一条暗线,它是由于物质(通常是气体)对特定波长的光的吸收而产生的,表明某些元素或分子的存在。

例句

1.By analyzing the absorption lines (吸收线) of distant galaxies, scientists can learn about their composition.

通过分析遥远星系的absorption lines(吸收线),科学家可以了解它们的成分。

2.The absorption line (吸收线) technique is crucial for understanding the chemical makeup of exoplanets.

使用absorption line(吸收线)技术对于理解系外行星的化学成分至关重要。

3.Astronomers use the spectrum of stars to identify elements by looking for specific absorption lines (吸收线).

天文学家通过观察星星的光谱来识别元素,寻找特定的absorption lines(吸收线)。

4.Each element has a unique pattern of absorption lines (吸收线) that acts like a fingerprint.

每种元素都有独特的absorption lines(吸收线)模式,类似于指纹。

5.The absorption line (吸收线) in the spectrum indicates the presence of hydrogen in the atmosphere.

光谱中的absorption line(吸收线)表明大气中存在氢元素。

作文

In the field of astrophysics, understanding the universe requires a deep comprehension of light and its interactions with matter. One of the fundamental concepts that scientists encounter is the phenomenon known as an absorption line. An absorption line refers to a dark line or band in a spectrum of light, which indicates the presence of specific elements in a star's atmosphere or other celestial bodies. This occurs when light passes through a cooler gas, causing certain wavelengths of light to be absorbed by the atoms or molecules present in that gas. The result is a spectrum that shows bright lines of light interspersed with these dark absorption lines, each corresponding to different elements and their unique energy levels.The significance of absorption lines extends beyond mere identification of elements. They serve as crucial tools for astronomers to determine various properties of stars and galaxies. By analyzing the patterns and strengths of these absorption lines, scientists can infer the temperature, density, and even the velocity of celestial objects. For instance, the Doppler effect, which describes the change in frequency or wavelength of light from a moving source, can be observed through shifts in the absorption lines. If a star is moving away from Earth, the absorption lines will shift toward the red end of the spectrum, a phenomenon known as redshift. Conversely, if a star is moving toward us, the lines shift toward the blue end, known as blueshift.Moreover, absorption lines play a pivotal role in understanding the chemical composition of distant galaxies. By examining the absorption lines in the light coming from these galaxies, astronomers can determine what elements are present and in what quantities. This information is vital for constructing models of galaxy formation and evolution. The study of absorption lines has also provided insights into the conditions of the early universe, helping scientists to piece together the history of cosmic development.In practical applications, absorption lines are not limited to astronomy. They are also essential in fields such as atmospheric science and environmental monitoring. For example, the analysis of absorption lines in sunlight passing through the Earth's atmosphere allows scientists to identify pollutants and greenhouse gases. This method of spectroscopy is a powerful tool for assessing air quality and understanding climate change.In conclusion, the concept of absorption lines is integral to both astrophysics and environmental science. These dark lines in a spectrum not only reveal the elemental makeup of stars and galaxies but also provide critical data about their physical properties and movements. The study of absorption lines continues to be a vibrant area of research, enhancing our understanding of the universe and our planet. As technology advances, the ability to analyze absorption lines will undoubtedly lead to new discoveries, further illuminating the intricate tapestry of the cosmos and our environment. The exploration of absorption lines exemplifies the profound connections between light, matter, and the vastness of space, showcasing how even the smallest details in a spectrum can unlock the mysteries of the universe.

在天体物理学领域,理解宇宙需要深入理解光及其与物质的相互作用。科学家们遇到的一个基本概念是称为吸收线的现象。吸收线是指光谱中的暗线或带,表明特定元素存在于恒星的气氛或其他天体中。这发生在光通过较冷的气体时,导致该气体中存在的原子或分子吸收特定波长的光。结果是光谱显示出明亮的光线与这些暗吸收线交错,每条线对应不同元素及其独特的能级。吸收线的重要性不仅限于元素的识别。它们作为天文学家确定恒星和星系各种属性的重要工具。通过分析这些吸收线的模式和强度,科学家可以推断出天体的温度、密度,甚至速度。例如,多普勒效应描述了来自运动源的光的频率或波长的变化,可以通过吸收线的移动观察到。如果一颗恒星远离地球,吸收线将向光谱的红色端移动,这种现象称为红移。相反,如果一颗恒星朝我们移动,线条则向蓝色端移动,称为蓝移。此外,吸收线在理解遥远星系的化学成分方面发挥着关键作用。通过检查来自这些星系的光中的吸收线,天文学家可以确定哪些元素存在以及它们的数量。这些信息对于构建星系形成和演化模型至关重要。对吸收线的研究还提供了关于早期宇宙条件的见解,帮助科学家拼凑宇宙发展的历史。在实际应用中,吸收线不仅限于天文学。它们在大气科学和环境监测等领域也至关重要。例如,通过分析阳光穿过地球大气层时的吸收线,科学家可以识别污染物和温室气体。这种光谱法是一种强大的工具,用于评估空气质量和理解气候变化。总之,吸收线的概念对天体物理学和环境科学都是不可或缺的。这些光谱中的暗线不仅揭示了恒星和星系的元素组成,还提供了关于其物理属性和运动的关键数据。对吸收线的研究仍然是一个充满活力的研究领域,增强了我们对宇宙和我们星球的理解。随着技术的进步,分析吸收线的能力无疑会导致新的发现,进一步阐明宇宙和我们环境的复杂结构。对吸收线的探索体现了光、物质与广袤空间之间深刻的联系,展示了光谱中即使是最小的细节也能揭开宇宙的奥秘。

相关单词

absorption

absorption详解:怎么读、什么意思、用法