absolute scattering power

简明释义

1. 绝对散射本领; 2. 绝对射散能力;

英英释义

Absolute scattering power refers to the measure of an object's ability to scatter incident light or other electromagnetic radiation, expressed as a ratio of the scattered intensity to the incident intensity under specified conditions.

绝对散射能力是指物体散射入射光或其他电磁辐射的能力的度量,通常表示为在特定条件下散射强度与入射强度的比率。

例句

1.In the study of aerosols, understanding the absolute scattering power 绝对散射能力 is crucial for climate modeling.

在气溶胶研究中,理解绝对散射能力 absolute scattering power 对于气候模型至关重要。

2.Scientists are investigating the absolute scattering power 绝对散射能力 of nanoparticles for drug delivery systems.

科学家正在研究纳米颗粒的绝对散射能力 absolute scattering power 用于药物传递系统。

3.The researchers measured the absolute scattering power 绝对散射能力 of different materials to determine their suitability for optical applications.

研究人员测量了不同材料的绝对散射能力 absolute scattering power,以确定它们在光学应用中的适用性。

4.To improve image quality, the absolute scattering power 绝对散射能力 of lenses must be optimized.

为了提高图像质量,镜头的绝对散射能力 absolute scattering power 必须进行优化。

5.The absolute scattering power 绝对散射能力 of a material can affect its performance in telecommunications.

材料的绝对散射能力 absolute scattering power 可能影响其在电信中的性能。

作文

In the realm of physics and optics, the term absolute scattering power refers to the intrinsic ability of a material to scatter incident light or other electromagnetic radiation. This property is crucial in various scientific fields, including atmospheric science, remote sensing, and materials science. Understanding absolute scattering power allows researchers to predict how light interacts with different materials, which can significantly impact the interpretation of data collected from various sources. To delve deeper into the concept, let us first consider what scattering means. Scattering occurs when light encounters particles or irregularities in a medium, causing it to deviate from its original path. The extent to which light is scattered depends on several factors, including the size, shape, and composition of the scattering particles. The absolute scattering power quantifies this behavior by providing a measure of how much light is scattered by a given volume of material under specific conditions. One practical application of understanding absolute scattering power is in the study of atmospheric phenomena. For instance, scientists analyze how sunlight scatters in the atmosphere to understand weather patterns, climate change, and air quality. Different gases and aerosols present in the atmosphere have varying absolute scattering powers, which can influence the color of the sky, the visibility of distant objects, and even the amount of solar energy that reaches the Earth's surface. Moreover, in remote sensing, the absolute scattering power of surfaces can be utilized to glean information about land cover, vegetation health, and water quality. By measuring how light reflects off and scatters from these surfaces, researchers can infer a wealth of information without needing to be physically present at the location. This capability is particularly valuable in monitoring environmental changes over time, as it allows for large-scale assessments that would be impractical through ground surveys alone. In materials science, the absolute scattering power is essential for characterizing new materials, especially those intended for optical applications. For example, engineers designing photonic devices must consider how light will scatter within the materials they choose. A high absolute scattering power could lead to significant losses in efficiency for devices like lasers or optical fibers, while a low scattering power might enhance performance by ensuring more light is transmitted rather than scattered. Understanding the absolute scattering power also has implications in medical imaging techniques such as optical coherence tomography (OCT). In these applications, the scattering properties of biological tissues are critical for generating accurate images. By analyzing how light scatters within tissues, clinicians can obtain detailed information about the structure and health of various organs, aiding in early diagnosis and treatment planning. In conclusion, the concept of absolute scattering power is fundamental across multiple disciplines, influencing our understanding of light interactions with matter. From atmospheric studies to advancements in medical imaging and materials science, mastering this concept is essential for researchers and professionals alike. As technology continues to evolve, the significance of accurately measuring and applying absolute scattering power will undoubtedly grow, paving the way for innovative solutions to complex challenges in science and engineering.

在物理学和光学领域,术语绝对散射能力指的是材料散射入射光或其他电磁辐射的内在能力。这一属性在气象科学、遥感和材料科学等多个科学领域中至关重要。理解绝对散射能力使研究人员能够预测光与不同材料的相互作用,这对从各种来源收集的数据的解释有着显著影响。为了更深入地探讨这一概念,让我们首先考虑什么是散射。当光遇到介质中的粒子或不规则性时,会导致光偏离其原始路径,这就是散射。光的散射程度取决于多个因素,包括散射粒子的大小、形状和成分。绝对散射能力通过提供在特定条件下给定材料的单位体积散射多少光的量度来量化这种行为。理解绝对散射能力的一个实际应用是在大气现象的研究中。例如,科学家分析阳光在大气中的散射,以了解天气模式、气候变化和空气质量。大气中存在的不同气体和气溶胶具有不同的绝对散射能力,这会影响天空的颜色、远处物体的可见性,甚至影响到到达地球表面的太阳能量。此外,在遥感中,地表的绝对散射能力可以用于获取有关土地覆盖、植被健康和水质的信息。通过测量光如何反射和散射这些表面,研究人员可以推断出丰富的信息,而无需亲自到达该地点。这种能力在监测环境变化方面尤其有价值,因为它允许进行大规模评估,而不需要通过地面调查来实现。在材料科学中,绝对散射能力对于表征新材料至关重要,特别是那些用于光学应用的材料。例如,设计光子设备的工程师必须考虑光在所选材料中的散射方式。高绝对散射能力可能导致激光器或光纤等设备的效率显著损失,而低散射能力则可能通过确保更多的光被传输而不是散射,从而提高性能。理解绝对散射能力还在医疗成像技术中具有重要意义,例如光学相干断层扫描(OCT)。在这些应用中,生物组织的散射特性对于生成准确的图像至关重要。通过分析光在组织中的散射方式,临床医生可以获得关于各种器官的结构和健康的详细信息,有助于早期诊断和治疗计划。总之,绝对散射能力的概念在多个学科中是基础性的,影响着我们对光与物质相互作用的理解。从大气研究到医学成像和材料科学的进展,掌握这一概念对于研究人员和专业人士来说都是必不可少的。随着技术的不断发展,准确测量和应用绝对散射能力的重要性无疑将会增加,为科学和工程中的复杂挑战开辟创新解决方案的道路。

相关单词

absolute

absolute详解:怎么读、什么意思、用法

scattering

scattering详解:怎么读、什么意思、用法