AB rectangular array

简明释义

对称中间梯度排列;

英英释义

An AB rectangular array is a two-dimensional arrangement of elements or objects in rows and columns, where 'A' represents the number of rows and 'B' represents the number of columns.

AB 矩形阵列是元素或物体在行和列中以二维方式排列的结构,其中 'A' 表示行数,'B' 表示列数。

例句

1.The data was organized in an AB rectangular array to facilitate easier analysis.

数据被组织在一个AB矩形数组中,以便于更简单的分析。

2.In our research, we used an AB rectangular array to model the distribution of resources across different sectors.

在我们的研究中,我们使用了一个AB矩形数组来模拟不同部门资源的分布。

3.We visualized the results using an AB rectangular array to clearly show the relationships between variables.

我们使用AB矩形数组可视化结果,以清晰显示变量之间的关系。

4.The configuration of the sensors was arranged in an AB rectangular array to maximize coverage.

传感器的配置被安排在一个AB矩形数组中,以最大化覆盖范围。

5.The algorithm requires the input to be in the form of an AB rectangular array for optimal performance.

该算法要求输入以AB矩形数组的形式提供,以获得最佳性能。

作文

In the realm of mathematics and computer science, the concept of an AB rectangular array is pivotal for organizing data efficiently. An AB rectangular array refers to a two-dimensional structure where data is arranged in rows and columns, specifically defined by two dimensions: A and B. This structure allows for systematic access and manipulation of data, making it essential in various applications such as databases, image processing, and scientific computations.The importance of an AB rectangular array can be illustrated through its application in programming. For instance, when developing algorithms that require matrix operations, utilizing an AB rectangular array can significantly enhance performance. Each element in the array can be accessed using its row and column indices, which simplifies the process of data retrieval. This efficiency is crucial when dealing with large datasets, where time complexity can become a bottleneck.Moreover, the versatility of an AB rectangular array extends beyond simple data storage. In graphical representations, such as images, pixels are often organized in a rectangular format. Each pixel's color and intensity can be represented as an element in an AB rectangular array, allowing for intricate image manipulation techniques. This is particularly relevant in fields like computer vision and graphics design, where understanding how to manipulate these arrays can lead to innovative solutions and artistic creations.In addition to programming and image processing, an AB rectangular array is also utilized in mathematical modeling. Many real-world problems can be expressed in terms of matrices, where the relationships between different variables are captured in a structured manner. For instance, in linear algebra, systems of equations can be represented using an AB rectangular array, facilitating easier computation of solutions using methods such as Gaussian elimination or matrix inversion.Furthermore, educational settings benefit from teaching the concept of an AB rectangular array. Students learn not only about data organization but also about critical thinking and problem-solving skills as they engage with these structures. By visualizing data in a rectangular format, learners can grasp complex concepts more easily, paving the way for deeper understanding in advanced topics like statistics and data analysis.In conclusion, the AB rectangular array is a foundational concept that permeates various fields, from computer science to mathematics and education. Its ability to organize data systematically makes it indispensable for efficient data handling and manipulation. As technology continues to evolve, the relevance of AB rectangular arrays will likely grow, underscoring the need for both students and professionals to master this essential structure. Understanding and effectively utilizing an AB rectangular array can unlock new possibilities in data analysis, algorithm development, and innovative problem-solving across diverse disciplines.

在数学和计算机科学领域,AB 矩形数组的概念对于有效组织数据至关重要。AB 矩形数组是指一种二维结构,其中数据按行和列排列,具体由两个维度 A 和 B 定义。这种结构允许系统地访问和操作数据,使其在数据库、图像处理和科学计算等各种应用中成为必不可少的。AB 矩形数组的重要性可以通过其在编程中的应用来说明。例如,在开发需要矩阵运算的算法时,利用 AB 矩形数组 可以显著提高性能。数组中的每个元素都可以通过其行和列索引进行访问,这简化了数据检索的过程。当处理大型数据集时,这种效率尤为关键,因为时间复杂度可能成为瓶颈。此外,AB 矩形数组的多功能性超越了简单的数据存储。在图形表示中,例如图像,像素通常以矩形格式组织。每个像素的颜色和强度可以表示为 AB 矩形数组 中的一个元素,从而允许进行复杂的图像处理技术。这在计算机视觉和图形设计等领域尤为相关,理解如何操作这些数组可以带来创新的解决方案和艺术创作。除了编程和图像处理,AB 矩形数组还用于数学建模。许多现实世界问题可以用矩阵表示,其中不同变量之间的关系以结构化的方式捕捉。例如,在线性代数中,方程组可以使用 AB 矩形数组 表示,从而便于使用高斯消元法或矩阵求逆等方法计算解。此外,教育环境也受益于教授 AB 矩形数组 的概念。学生不仅学习数据组织,还通过与这些结构的互动培养批判性思维和解决问题的能力。通过以矩形格式可视化数据,学习者可以更容易地掌握复杂概念,为深入理解统计和数据分析等高级主题铺平道路。总之,AB 矩形数组 是一个基础概念,渗透到计算机科学、数学和教育等多个领域。其系统组织数据的能力使其在高效数据处理和操作中不可或缺。随着技术的不断发展,AB 矩形数组 的相关性可能会不断增长,强调了学生和专业人士掌握这一基本结构的必要性。理解和有效利用 AB 矩形数组 可以在数据分析、算法开发和跨学科的创新问题解决中开启新的可能性。

相关单词

rectangular

rectangular详解:怎么读、什么意思、用法