above thermal neutron

简明释义

超热中子;

英英释义

Referring to neutrons that have energies higher than those of thermal neutrons, which are typically in the range of 0.025 eV. These higher-energy neutrons can result from nuclear reactions or other processes and have different interactions with matter.

指能量高于热中子的中子,热中子的能量通常在0.025电子伏特的范围内。这些高能中子可以来自核反应或其他过程,并与物质的相互作用有所不同。

例句

1.The study focused on the behavior of isotopes when exposed to radiation above thermal neutron 热中子以上 fluxes.

该研究集中在同位素暴露于热中子以上通量辐射时的行为。

2.In nuclear physics, particles that collide with nuclei at energies above thermal neutron 热中子以上 can induce fission more effectively.

在核物理中,与核碰撞的粒子在能量热中子以上时可以更有效地引发裂变。

3.The reactor operates efficiently with fuel enriched to levels well above thermal neutron 热中子以上 energies.

该反应堆以高于热中子以上能量的燃料有效运作。

4.For certain applications, it is crucial to utilize materials that can absorb neutrons above thermal neutron 热中子以上 energy ranges.

对于某些应用,利用能够吸收热中子以上能量范围内中子的材料至关重要。

5.The experiment was designed to measure reactions occurring at neutron energies above thermal neutron 热中子以上 levels.

该实验旨在测量在热中子以上能量水平下发生的反应。

作文

In the field of nuclear physics, understanding the behavior of neutrons is crucial for various applications, including nuclear reactors and medical treatments. Neutrons are subatomic particles that play a significant role in the stability of atomic nuclei. Among the different categories of neutrons, those that are classified as 'thermal neutrons' are particularly important due to their low kinetic energy, which allows them to be easily absorbed by fissile materials like uranium-235. However, there exists a category of neutrons that possess higher energy levels, referred to as neutrons 'above thermal neutron' (高于热中子). These neutrons have energies greater than approximately 0.025 eV, which is the threshold energy for thermal neutrons.Neutrons 'above thermal neutron' (高于热中子) can interact with matter in different ways compared to their thermal counterparts. For instance, they are less likely to be captured by nuclei and more capable of inducing fission reactions in certain isotopes. This property makes them valuable in specific types of nuclear reactors, such as fast breeder reactors, where maintaining a high neutron flux is essential for sustaining the fission process.In practical terms, neutrons 'above thermal neutron' (高于热中子) are generated through various nuclear reactions, including those occurring in particle accelerators or during the decay of certain radioactive materials. Their higher energy levels enable them to penetrate materials more effectively, making them useful in applications such as neutron radiography, a technique employed to inspect the integrity of structures and components in industries ranging from aerospace to nuclear power.Moreover, the study of neutrons 'above thermal neutron' (高于热中子) is not limited to industrial applications; it also extends to research in fundamental physics. Scientists utilize these neutrons to explore the properties of materials at the atomic level. By observing how these high-energy neutrons scatter off different substances, researchers can gain insights into the arrangement of atoms and the forces that govern their interactions.Additionally, neutrons 'above thermal neutron' (高于热中子) play a critical role in the field of nuclear medicine. In certain therapeutic procedures, high-energy neutrons can be used to target and destroy cancerous cells while minimizing damage to surrounding healthy tissue. This targeted approach enhances the effectiveness of treatment while reducing side effects, illustrating the importance of understanding neutron behavior in medical applications.In conclusion, the distinction between thermal neutrons and those 'above thermal neutron' (高于热中子) is vital for multiple fields, including nuclear energy, material science, and medicine. As technology advances, the ability to manipulate and utilize these high-energy neutrons will continue to evolve, leading to new innovations and discoveries. Therefore, a comprehensive understanding of neutrons, particularly those 'above thermal neutron' (高于热中子), is essential for scientists and engineers working in nuclear-related disciplines. Through ongoing research and development, we can harness the unique properties of these neutrons to improve existing technologies and create new solutions to complex challenges in our world.

在核物理领域,理解中子的行为对于各种应用至关重要,包括核反应堆和医疗治疗。中子是亚原子粒子,在原子核的稳定性中发挥着重要作用。在不同类别的中子中,被分类为“热中子”的那些由于其低动能而特别重要,这使得它们能够被铀-235等裂变材料轻易吸收。然而,存在一种具有更高能量水平的中子类别,称为“高于热中子”(高于热中子)。这些中子的能量大于约0.025电子伏特,这是热中子的阈值能量。“高于热中子”(高于热中子)与物质的相互作用方式与其热中子同类相比有所不同。例如,它们不太可能被原子核捕获,更能有效地诱导某些同位素的裂变反应。这一特性使它们在特定类型的核反应堆中非常有价值,例如快速增殖反应堆,在这些反应堆中,维持高中子通量对于维持裂变过程至关重要。在实际应用中,“高于热中子”(高于热中子)是通过各种核反应生成的,包括发生在粒子加速器中的反应或某些放射性材料衰变过程中。它们较高的能量水平使它们能够更有效地穿透材料,这使得它们在中子成像等应用中非常有用,这是一种用于检查航空航天到核电等行业中结构和组件完整性的技术。此外,“高于热中子”(高于热中子)的研究不仅限于工业应用;它还扩展到基础物理学的研究。科学家们利用这些中子探索材料在原子层面的性质。通过观察这些高能中子如何散射不同物质,研究人员可以获得关于原子排列和支配其相互作用的力的见解。此外,“高于热中子”(高于热中子)在核医学领域也发挥着关键作用。在某些治疗程序中,高能中子可用于针对并摧毁癌细胞,同时最小化对周围健康组织的损害。这种靶向方法增强了治疗的有效性,同时减少了副作用,说明了理解中子行为在医疗应用中的重要性。总之,热中子与“高于热中子”(高于热中子)之间的区别对于多个领域至关重要,包括核能、材料科学和医学。随着技术的进步,操控和利用这些高能中子的能力将继续发展,导致新的创新和发现。因此,全面理解中子,特别是“高于热中子”(高于热中子),对从事核相关学科的科学家和工程师至关重要。通过持续的研究和开发,我们可以利用这些中子的独特性质来改善现有技术,并创造出应对我们世界复杂挑战的新解决方案。

相关单词

thermal

thermal详解:怎么读、什么意思、用法

neutron

neutron详解:怎么读、什么意思、用法