chromosome translocation

简明释义

染色体易位

英英释义

Chromosome translocation is a genetic alteration in which a segment of one chromosome breaks off and attaches to another chromosome, potentially leading to genetic disorders or cancers.

染色体易位是一种遗传改变,其中一个染色体的一部分断裂并附着到另一个染色体上,这可能导致遗传疾病或癌症。

例句

1.Genetic testing can identify specific chromosome translocation 染色体易位 events that may influence treatment options.

基因检测可以识别可能影响治疗选择的特定chromosome translocation 染色体易位事件。

2.A common example of chromosome translocation 染色体易位 is the Philadelphia chromosome, which is associated with chronic myeloid leukemia.

一个常见的chromosome translocation 染色体易位例子是费城染色体,它与慢性髓性白血病有关。

3.Researchers found that the chromosome translocation 染色体易位 in patients with certain types of leukemia is a critical factor for diagnosis.

研究人员发现,某些类型白血病患者的chromosome translocation 染色体易位是诊断的重要因素。

4.Understanding chromosome translocation 染色体易位 is essential for developing targeted therapies in cancer treatment.

理解chromosome translocation 染色体易位对开发癌症治疗的靶向疗法至关重要。

5.The study focused on how chromosome translocation 染色体易位 can lead to genetic disorders.

该研究集中于chromosome translocation 染色体易位如何导致遗传疾病。

作文

Understanding the complexities of genetics is crucial in the field of biology, particularly when it comes to understanding genetic disorders and diseases. One significant phenomenon in genetics is chromosome translocation, which plays a pivotal role in various forms of cancer and other genetic conditions. In simple terms, chromosome translocation (染色体易位) refers to a genetic event where a segment of one chromosome breaks off and attaches to another chromosome. This can lead to changes in the expression of genes and potentially result in serious health issues.The process of chromosome translocation can occur during cell division when chromosomes are being replicated. If errors happen during this replication process, a piece of DNA may be incorrectly repaired or misplaced, leading to the translocation. Such events can disrupt the normal function of genes, sometimes causing them to become overactive or inactive. For instance, in certain cancers, chromosome translocation can result in the formation of fusion genes, which can drive uncontrolled cell growth.A well-known example of chromosome translocation is found in chronic myeloid leukemia (CML), a type of cancer that affects blood cells. In CML, a specific translocation occurs between chromosomes 9 and 22, resulting in the BCR-ABL fusion gene. This fusion gene produces a protein that signals cells to multiply uncontrollably, leading to the proliferation of cancerous cells. Understanding this specific chromosome translocation has been critical in developing targeted therapies for CML, such as imatinib, which specifically inhibits the activity of the BCR-ABL protein.Moreover, chromosome translocation is not limited to cancer; it can also be involved in other genetic disorders. For example, in some cases of congenital disabilities, translocations can disrupt normal development by altering the genetic instructions necessary for proper growth and function. These disruptions can lead to a variety of health challenges, highlighting the importance of early genetic screening and counseling.The study of chromosome translocation has advanced significantly with the advent of modern genetic technologies. Techniques such as fluorescence in situ hybridization (FISH) allow researchers to visualize specific chromosomes and identify translocations that may be present in a cell sample. This capability is invaluable in clinical settings, where accurate diagnosis can significantly impact treatment decisions and outcomes.In conclusion, chromosome translocation (染色体易位) is a crucial concept in genetics that has far-reaching implications for our understanding of cancer and genetic disorders. As research continues to evolve, the knowledge gained from studying these genetic events will undoubtedly lead to more effective treatments and interventions, ultimately improving patient outcomes. The exploration of chromosome translocation serves as a reminder of the intricate connections between our genetic makeup and our health, emphasizing the need for continued research in this vital area of science.

理解遗传学的复杂性在生物学领域至关重要,尤其是在理解遗传疾病和疾病时。其中一个重要的现象是染色体易位,它在各种癌症和其他遗传病中发挥着关键作用。简单来说,染色体易位指的是一种遗传事件,其中一条染色体的一段断裂并附着到另一条染色体上。这可能导致基因表达的变化,并可能导致严重的健康问题。染色体易位的过程可以在细胞分裂期间发生,当时染色体正在被复制。如果在这个复制过程中发生错误,一段DNA可能会被错误地修复或放错位置,从而导致易位。这种事件可能会干扰基因的正常功能,有时导致基因过度活跃或不活跃。例如,在某些癌症中,染色体易位可能导致融合基因的形成,这可能驱动细胞的失控生长。一个众所周知的染色体易位的例子是在慢性髓性白血病(CML)中,这是一种影响血液细胞的癌症。在CML中,特定的易位发生在第9号和第22号染色体之间,导致BCR-ABL融合基因的形成。这个融合基因产生一种信号细胞无控制地增殖的蛋白质,导致癌细胞的增殖。理解这种特定的染色体易位对于开发针对CML的靶向疗法(如伊马替尼)至关重要,该药物专门抑制BCR-ABL蛋白的活性。此外,染色体易位不仅限于癌症;它还可能涉及其他遗传疾病。例如,在某些先天性残疾的情况下,易位可能通过改变正常发育所需的遗传指令来干扰正常的发展。这些干扰可能导致各种健康挑战,突显了早期遗传筛查和咨询的重要性。随着现代遗传技术的发展,对染色体易位的研究有了显著进展。荧光原位杂交(FISH)等技术使研究人员能够可视化特定的染色体并识别可能存在于细胞样本中的易位。这种能力在临床环境中是无价的,因为准确的诊断可以显著影响治疗决策和结果。总之,染色体易位(染色体易位)是遗传学中的一个关键概念,对我们理解癌症和遗传疾病有着深远的影响。随着研究的不断发展,从研究这些遗传事件中获得的知识无疑将导致更有效的治疗和干预,最终改善患者的结果。对染色体易位的探索提醒我们,遗传构成与健康之间存在着复杂的联系,强调了在这一重要科学领域持续研究的必要性。

相关单词

chromosome

chromosome详解:怎么读、什么意思、用法

translocation

translocation详解:怎么读、什么意思、用法