chromosome pairing
简明释义
染色体配对
英英释义
Chromosome pairing refers to the process during cell division, particularly meiosis, where homologous chromosomes align with each other to form pairs. | 染色体配对是指在细胞分裂过程中,特别是减数分裂中,同源染色体彼此对齐形成配对的过程。 |
例句
1.The study of chromosome pairing 染色体配对 mechanisms has advanced our knowledge of evolutionary biology.
对染色体配对 chromosome pairing 机制的研究推动了我们对进化生物学的理解。
2.During meiosis, chromosome pairing 染色体配对 is essential for the proper segregation of genetic material.
在减数分裂过程中,染色体配对 chromosome pairing 对于遗传物质的正确分离至关重要。
3.Researchers found that errors in chromosome pairing 染色体配对 can lead to genetic disorders.
研究人员发现,染色体配对 chromosome pairing 中的错误可能导致遗传疾病。
4.The process of chromosome pairing 染色体配对 is facilitated by proteins that recognize homologous sequences.
通过识别同源序列的蛋白质,染色体配对 chromosome pairing 的过程得以促进。
5.In plant breeding, understanding chromosome pairing 染色体配对 can help improve hybrid vigor.
在植物育种中,理解染色体配对 chromosome pairing 可以帮助提高杂交优势。
作文
The process of reproduction in living organisms is a fascinating subject that has intrigued scientists for centuries. One of the key elements in this process is the concept of chromosome pairing, which plays a crucial role during cell division and genetic inheritance. In simple terms, chromosome pairing refers to the alignment of homologous chromosomes during meiosis, a type of cell division that produces gametes. This pairing is essential for ensuring that genetic information is accurately passed from one generation to the next.During meiosis, cells undergo two rounds of division, resulting in four non-identical daughter cells, each with half the number of chromosomes as the original cell. Before this division occurs, however, the chromosomes must first replicate, creating identical sister chromatids. It is at this stage that chromosome pairing becomes critical. The homologous chromosomes, which are pairs of chromosomes containing the same genes but possibly different alleles, come together and align closely along their lengths. This alignment allows for genetic recombination, where segments of DNA are exchanged between the paired chromosomes. This process increases genetic diversity among offspring, which is vital for evolution and adaptation.The significance of chromosome pairing extends beyond just genetic diversity; it also ensures proper segregation of chromosomes during meiosis. If chromosomes do not pair correctly, it can lead to errors in cell division, resulting in conditions such as aneuploidy, where cells have an abnormal number of chromosomes. Such conditions can lead to various genetic disorders, highlighting the importance of accurate chromosome pairing in maintaining healthy populations.Research into chromosome pairing has advanced significantly in recent years, thanks to improvements in imaging techniques and genetic analysis. Scientists can now observe the dynamics of chromosome behavior in real-time, providing insights into how chromosome pairing occurs at a molecular level. These studies have revealed that several proteins and enzymes are involved in facilitating the pairing process. For instance, the synaptonemal complex is a protein structure that forms between homologous chromosomes and is crucial for their alignment and recombination.Moreover, understanding chromosome pairing has implications for various fields, including agriculture and medicine. In agriculture, knowledge of how chromosomes pair and recombine can help in developing crops with desirable traits, such as disease resistance or improved yield. In medicine, studying chromosome pairing can provide insights into the mechanisms behind certain cancers and genetic disorders, potentially leading to new therapeutic strategies.In conclusion, chromosome pairing is a fundamental process in genetics that underpins reproduction and genetic diversity. Its role in meiosis not only facilitates the proper distribution of genetic material but also contributes to the evolutionary success of species. As research continues to unravel the complexities of chromosome pairing, we gain a deeper appreciation for the intricate processes that govern life itself. The more we understand about this phenomenon, the better equipped we will be to address the challenges posed by genetic diseases and to harness the power of genetics in improving human health and agricultural productivity.
生物体的繁殖过程是一个迷人的主题,几个世纪以来一直吸引着科学家们的兴趣。其中一个关键要素是“染色体配对”的概念,它在细胞分裂和遗传继承中发挥着至关重要的作用。简单来说,“染色体配对”是指在减数分裂过程中同源染色体的排列,这是产生配子的细胞分裂类型。这种配对对于确保遗传信息准确地从一代传递到下一代至关重要。在减数分裂过程中,细胞经历两轮分裂,导致四个非相同的子细胞,每个子细胞的染色体数量是原始细胞的一半。然而,在发生这种分裂之前,染色体必须首先复制,形成相同的姐妹染色单体。在这个阶段,“染色体配对”变得至关重要。同源染色体是包含相同基因但可能有不同等位基因的染色体对,它们聚集在一起并沿其长度紧密对齐。这种对齐允许基因重组,即成对染色体之间交换DNA片段的过程。这一过程增加了后代的遗传多样性,这对于进化和适应至关重要。“染色体配对”的重要性不仅仅体现在遗传多样性上;它还确保了减数分裂期间染色体的正确分离。如果染色体未能正确配对,可能会导致细胞分裂中的错误,从而导致如非整倍体等情况,其中细胞具有异常数量的染色体。这种情况可能导致各种遗传疾病,突显了准确的“染色体配对”在维持健康种群中的重要性。近年来,由于成像技术和遗传分析的进步,对“染色体配对”的研究取得了显著进展。科学家们现在可以实时观察染色体行为的动态,为我们提供了关于“染色体配对”如何在分子水平上发生的见解。这些研究揭示了多种蛋白质和酶参与促进配对过程。例如,联会复合体是一种在同源染色体之间形成的蛋白质结构,对于它们的对齐和重组至关重要。此外,理解“染色体配对”对农业和医学等多个领域有重要意义。在农业中,了解染色体如何配对和重组可以帮助开发具有理想特性的作物,例如抗病性或提高产量。在医学中,研究“染色体配对”可以揭示某些癌症和遗传疾病背后的机制,可能导致新的治疗策略。总之,“染色体配对”是遗传学中的一个基本过程,它支撑着繁殖和遗传多样性。它在减数分裂中的作用不仅促进了遗传物质的正确分配,还为物种的进化成功做出了贡献。随着研究不断揭示“染色体配对”的复杂性,我们对支配生命本身的精妙过程有了更深刻的认识。我们越了解这一现象,就越能应对遗传疾病带来的挑战,并利用遗传学的力量改善人类健康和农业生产力。
相关单词