suppressor mutation

简明释义

抑制因子突变

英英释义

A suppressor mutation is a genetic alteration that counteracts the effects of a previous mutation, restoring the function or phenotype that was lost due to the original mutation.

抑制突变是一种基因改变,它抵消了先前突变的影响,恢复了因原始突变而丧失的功能或表型。

例句

1.By analyzing the genome, scientists identified a suppressor mutation that could enhance drug resistance in cancer cells.

通过分析基因组,科学家们发现了一种可以增强癌细胞药物抗性的抑制突变

2.Researchers are exploring how suppressor mutations can be used to develop new therapies for hereditary diseases.

研究人员正在探索如何利用抑制突变开发遗传疾病的新疗法。

3.The presence of a suppressor mutation in the yeast model allowed for better survival under stress conditions.

在酵母模型中存在的抑制突变使其在压力条件下更好地生存。

4.A specific suppressor mutation was found to reverse the effects of a harmful mutation in laboratory mice.

在实验小鼠中发现一种特定的抑制突变能够逆转有害突变的影响。

5.The research team discovered a suppressor mutation that alleviated the symptoms of the genetic disorder.

研究团队发现了一种抑制突变,缓解了这种遗传疾病的症状。

作文

In the field of genetics, the concept of a suppressor mutation plays a crucial role in understanding how organisms adapt and evolve. A suppressor mutation is defined as a secondary mutation that counteracts the effects of a primary mutation, thus restoring the original phenotype or function. This fascinating phenomenon highlights the complexity of genetic interactions and the resilience of biological systems. To illustrate, consider a scenario where a primary mutation occurs in a gene responsible for producing a vital enzyme. This initial mutation may lead to a non-functional enzyme, resulting in a specific phenotype, such as a disease or a developmental issue. However, if a second mutation arises in another gene that compensates for the loss of function caused by the first mutation, this is referred to as a suppressor mutation. The organism may then exhibit a normal phenotype despite the presence of the initial mutation, showcasing the intricate dance of genetic regulation. The study of suppressor mutations has profound implications in various fields, including evolutionary biology, medicine, and biotechnology. In evolutionary biology, these mutations provide insight into the mechanisms of adaptation. For instance, when faced with environmental stressors, organisms may acquire suppressor mutations that allow them to survive and reproduce despite detrimental primary mutations. This process can lead to the emergence of new traits and, ultimately, speciation. In medicine, understanding suppressor mutations can be invaluable for developing targeted therapies. Cancer research, for example, often focuses on identifying mutations that drive tumor growth. However, some tumors may harbor suppressor mutations that enable them to evade treatments or resist therapies. By elucidating these genetic interactions, researchers can devise more effective treatment strategies that target not only the primary mutations but also the compensatory mechanisms that tumors employ. Furthermore, the application of suppressor mutations extends to biotechnology and synthetic biology. Scientists can engineer organisms with specific mutations to produce desired traits, such as increased yield in crops or enhanced production of biofuels. By understanding how suppressor mutations work, researchers can manipulate genetic pathways to achieve specific outcomes, paving the way for innovations in agriculture and renewable energy. Despite their significance, the study of suppressor mutations is not without challenges. Identifying these mutations requires sophisticated techniques and a deep understanding of genetic networks. Additionally, the interplay between different mutations can lead to unpredictable results, complicating efforts to predict phenotypic outcomes. Nevertheless, ongoing research continues to unravel the complexities of genetic interactions, shedding light on the mechanisms that govern life itself. In conclusion, suppressor mutations are a testament to the resilience and adaptability of living organisms. They serve as a reminder that even in the face of genetic challenges, nature finds ways to compensate and thrive. As our understanding of these mutations deepens, we unlock new possibilities for advancements in science and medicine, ultimately enhancing our ability to address the challenges posed by genetic disorders and environmental changes.

在遗传学领域,suppressor mutation(抑制突变)的概念在理解生物体如何适应和进化方面起着至关重要的作用。suppressor mutation 被定义为一种次级突变,它抵消了初级突变的影响,从而恢复了原始表型或功能。这一迷人的现象突显了遗传相互作用的复杂性和生物系统的韧性。举个例子,考虑一个场景,其中一个基因发生了初级突变,这个基因负责产生一种重要的酶。这种初始突变可能导致酶失去功能,进而导致特定的表型,比如某种疾病或发育问题。然而,如果第二个突变出现在另一个基因中,并补偿了由第一个突变造成的功能丧失,那么这被称为suppressor mutation(抑制突变)。尽管存在初级突变,生物体仍然可能表现出正常的表型,展示了遗传调控的复杂舞蹈。对suppressor mutations(抑制突变)的研究在进化生物学、医学和生物技术等多个领域具有深远的意义。在进化生物学中,这些突变提供了关于适应机制的洞察。例如,当面临环境压力时,生物体可能会获得suppressor mutations(抑制突变),使其能够在存在有害初级突变的情况下生存和繁殖。这个过程可能导致新特征的出现,最终导致物种形成。在医学领域,理解suppressor mutations(抑制突变)对于开发靶向治疗是非常宝贵的。癌症研究通常集中于识别驱动肿瘤生长的突变。然而,一些肿瘤可能携带suppressor mutations(抑制突变),使其能够逃避治疗或抵抗疗法。通过阐明这些遗传相互作用,研究人员可以设计更有效的治疗策略,针对不仅仅是初级突变,还包括肿瘤所采用的补偿机制。此外,suppressor mutations(抑制突变)的应用延伸到生物技术和合成生物学。科学家可以工程化特定突变的生物体,以产生所需的特征,例如提高农作物的产量或增强生物燃料的生产。通过理解suppressor mutations(抑制突变)的工作原理,研究人员可以操纵遗传途径以实现特定结果,为农业和可再生能源的创新铺平道路。尽管它们的重要性,suppressor mutations(抑制突变)的研究并非没有挑战。识别这些突变需要复杂的技术和对遗传网络的深刻理解。此外,不同突变之间的相互作用可能导致不可预测的结果,复杂化了预测表型结果的努力。然而,持续的研究继续揭示遗传相互作用的复杂性,阐明支配生命本身的机制。总之,suppressor mutations(抑制突变)是生物体韧性和适应力的证明。它们提醒我们,即使面对遗传挑战,自然也会找到补偿和生存的方法。随着我们对这些突变理解的加深,我们解锁了科学和医学进步的新可能性,最终增强了我们应对遗传疾病和环境变化挑战的能力。

相关单词

suppressor

suppressor详解:怎么读、什么意思、用法

mutation

mutation详解:怎么读、什么意思、用法