mass spectrometry

简明释义

质谱法

英英释义

Mass spectrometry is an analytical technique used to measure the mass-to-charge ratio of ions, allowing for the identification and quantification of substances in a sample.

质谱法是一种分析技术,用于测量离子的质量与电荷比,从而识别和定量样品中的物质。

例句

1.Using mass spectrometry 质谱分析, scientists can detect trace amounts of substances in complex mixtures.

科学家可以使用质谱分析 mass spectrometry检测复杂混合物中的微量物质。

2.In the lab, we used mass spectrometry 质谱分析 to identify the molecular weight of the compound.

在实验室中,我们使用质谱分析 mass spectrometry来确定化合物的分子量。

3.Researchers are using mass spectrometry 质谱分析 to analyze protein structures.

研究人员正在使用质谱分析 mass spectrometry来分析蛋白质结构。

4.The pharmaceutical company relied on mass spectrometry 质谱分析 for drug development.

制药公司依赖质谱分析 mass spectrometry进行药物开发。

5.The results from mass spectrometry 质谱分析 helped us determine the presence of contaminants in the sample.

来自质谱分析 mass spectrometry的结果帮助我们确定样品中污染物的存在。

作文

Mass spectrometry is a powerful analytical technique used to measure the mass-to-charge ratio of ions. This method has become an essential tool in various fields such as chemistry, biology, and environmental science. By utilizing mass spectrometry (质谱法), researchers can identify and quantify different substances within a sample with remarkable precision. The principle behind this technique involves ionizing chemical compounds to generate charged molecules or molecule fragments and then measuring their exact mass. One of the key advantages of mass spectrometry (质谱法) is its sensitivity. It can detect even trace amounts of substances, making it invaluable for applications such as drug testing, where minute quantities of drugs need to be identified in biological samples. Furthermore, the ability to analyze complex mixtures without prior separation makes mass spectrometry (质谱法) a preferred choice for many scientists.In addition to its sensitivity, mass spectrometry (质谱法) offers high specificity. Different compounds produce unique mass spectra, which serve as fingerprints for identification. This specificity allows researchers to distinguish between similar substances, which is particularly important in fields like proteomics, where thousands of proteins may exist in a single sample.The development of tandem mass spectrometry (质谱法) has further enhanced the capabilities of this technique. In tandem mass spectrometry (质谱法), multiple stages of mass analysis are performed, enabling deeper analysis of complex mixtures. This approach allows for better characterization of molecules, including their structure and composition. The combination of these stages helps in elucidating the mechanisms of biochemical processes and in drug discovery.Moreover, mass spectrometry (质谱法) plays a crucial role in metabolomics, the study of small molecules in biological systems. By analyzing metabolites, researchers can gain insights into metabolic pathways, disease states, and the effects of drugs on the body. This application underscores the importance of mass spectrometry (质谱法) in modern biomedical research, helping to bridge the gap between basic science and clinical applications.Despite its numerous advantages, mass spectrometry (质谱法) does have limitations. For instance, the interpretation of mass spectra can be complex, requiring specialized knowledge and experience. Additionally, some compounds may not ionize efficiently, leading to challenges in detection. However, advancements in technology continue to address these issues, making mass spectrometry (质谱法) more accessible and user-friendly.In conclusion, mass spectrometry (质谱法) is an indispensable analytical tool that has revolutionized many scientific fields. Its ability to provide detailed information about the composition and structure of molecules has made it a cornerstone of modern analytical chemistry. As technology advances, the applications of mass spectrometry (质谱法) will undoubtedly expand, paving the way for new discoveries and innovations in science and medicine.

质谱法是一种强大的分析技术,用于测量离子的质量与电荷比。这种方法已成为化学、生物学和环境科学等多个领域的重要工具。通过利用质谱法mass spectrometry),研究人员可以以惊人的精确度识别和定量样本中的不同物质。这项技术的原理涉及对化合物进行电离,以生成带电分子或分子碎片,然后测量其确切质量。质谱法mass spectrometry)的一个关键优势是其灵敏度。它可以检测到微量物质,这使其在药物测试等应用中不可或缺,在这些情况下需要识别生物样本中的微量药物。此外,分析复杂混合物而不需要事先分离,使得质谱法mass spectrometry)成为许多科学家的首选。除了灵敏度之外,质谱法mass spectrometry)还提供了高特异性。不同的化合物产生独特的质谱,这些质谱作为识别的指纹。这种特异性使研究人员能够区分相似物质,这在蛋白质组学等领域尤为重要,因为在单一样本中可能存在数千种蛋白质。串联质谱法mass spectrometry)的发展进一步增强了这一技术的能力。在串联质谱法mass spectrometry)中,执行多个阶段的质量分析,从而能够更深入地分析复杂混合物。这种方法有助于更好地表征分子,包括它们的结构和组成。这些阶段的结合有助于阐明生化过程的机制以及药物发现。此外,质谱法mass spectrometry)在代谢组学中发挥着至关重要的作用,这是研究生物系统中小分子的学科。通过分析代谢物,研究人员可以获得关于代谢途径、疾病状态和药物对身体影响的见解。这一应用强调了质谱法mass spectrometry)在现代生物医学研究中的重要性,帮助弥合基础科学与临床应用之间的鸿沟。尽管有众多优势,质谱法mass spectrometry)也存在一些局限性。例如,质谱的解释可能很复杂,需要专门的知识和经验。此外,一些化合物可能无法有效电离,导致检测面临挑战。然而,技术的进步不断解决这些问题,使得质谱法mass spectrometry)变得更加易于使用。总之,质谱法mass spectrometry)是一种不可或缺的分析工具,已经彻底改变了许多科学领域。其提供关于分子组成和结构的详细信息的能力,使其成为现代分析化学的基石。随着技术的进步,质谱法mass spectrometry)的应用无疑会扩展,为科学和医学领域的新发现和创新铺平道路。

相关单词

spectrometry

spectrometry详解:怎么读、什么意思、用法