tridentate

简明释义

[traɪˈdenteɪt][traɪˈdenteɪt]

adj. (有)三齿的,三叉的

英英释义

Having three teeth or prongs, typically used in reference to a type of chemical ligand that forms three bonds with a central atom.

具有三个齿或叉,通常指一种化学配体,与中心原子形成三个键。

单词用法

tridentate coordination

三齿配位

tridentate binding

三齿结合

tridentate metal complex

三齿金属络合物

tridentate structure

三齿结构

同义词

three-toothed

三齿的

The tridentate ligand binds to the metal center through three points.

三齿配体通过三个点与金属中心结合。

triangular

三角形的

In chemistry, tridentate complexes are often more stable than bidentate ones.

在化学中,三齿配合物通常比二齿配合物更稳定。

反义词

monodentate

单齿的

Monodentate ligands bind to a metal center through a single atom.

单齿配体通过单个原子与金属中心结合。

bidentate

双齿的

Bidentate ligands can form two bonds with a metal ion, enhancing stability.

双齿配体可以与金属离子形成两个键,从而增强稳定性。

例句

1.Fixation of fractures of tibial shafts was simple. Anatomical reduction of fractures was obtained. The tridentate structure of the TITN fit well the funnel-like medullary of the distal part of tibia.

TITN固定胫骨骨折,操作简便,骨折解剖复位,其远端分叉状结构与胫骨下端漏斗状髓腔良好相容。

2.The effects of tridentate ligand structure, central atom, co catalyst and supported on property of catalysts are presented.

介绍了三齿配体结构、中心金属原子、 助催化剂、负载化等对催化剂性能的影响;

3.Fixation of fractures of tibial shafts was simple. Anatomical reduction of fractures was obtained. The tridentate structure of the TITN fit well the funnel-like medullary of the distal part of tibia.

TITN固定胫骨骨折,操作简便,骨折解剖复位,其远端分叉状结构与胫骨下端漏斗状髓腔良好相容。

4.Objective: to provide anatomical basis of tibial intramedullary tridentate nail (TITN) by applied anatomy of tibia.

目的:通过胫骨应用解剖测量,为胫骨型髓内分叉钉(TITN)设计提供解剖依据。

5.In communicating hydrocephalus, round-blunt ascending tridentate imaging was showed, the nuclide was accumulated on the surface of cerebrum and longitudinal fissure and dissipation time was delayed.

交通性脑积水表现为上行三叉影像圆钝,核素在脑表面和纵裂区蓄积且消散时间延长。

6.The tridentate nature of the compound enhances its ability to chelate metals effectively.

该化合物的三齿特性增强了其有效螯合金属的能力。

7.The molecule has a tridentate structure, allowing it to form strong bonds with metal ions.

该分子具有三齿结构,能够与金属离子形成强键合。

8.In coordination chemistry, tridentate ligands are often used to stabilize transition metal complexes.

在配位化学中,三齿配体常用于稳定过渡金属络合物。

9.By using a tridentate ligand, we can achieve greater selectivity in our reactions.

通过使用三齿配体,我们可以在反应中实现更大的选择性。

10.Researchers synthesized a new tridentate ligand that showed promising results in catalysis.

研究人员合成了一种新的三齿配体,在催化中表现出良好的结果。

作文

In the field of chemistry, the term tridentate refers to a type of ligand that has three donor atoms capable of binding to a central metal atom or ion. Understanding the concept of tridentate ligands is essential for students and professionals working with coordination compounds. These ligands play a crucial role in the stability and reactivity of metal complexes, which are fundamental in various chemical reactions and applications. For instance, the presence of a tridentate ligand can significantly enhance the stability of a metal complex compared to bidentate or monodentate ligands due to the formation of more bonds between the ligand and the metal center.To illustrate the importance of tridentate ligands, consider the example of ethylenediaminetriacetate (EDTA), a widely used chelating agent in both industrial and biological contexts. EDTA is a classic tridentate ligand that can effectively bind to metal ions such as calcium and iron. Its ability to form stable complexes is utilized in various applications, including water treatment, medicine, and even food preservation. The three binding sites of EDTA allow it to encircle the metal ion, thereby preventing it from participating in unwanted reactions, which is particularly important in biological systems where metal ions can catalyze harmful processes.Another significant aspect of tridentate ligands is their role in catalysis. In many catalytic processes, metal complexes with tridentate ligands exhibit enhanced activity and selectivity. This is because the three donor atoms can create a specific spatial arrangement around the metal center, facilitating the interaction with substrates. For example, in asymmetric synthesis, tridentate ligands can help achieve higher enantioselectivity, leading to the production of desired chiral molecules with greater efficiency.Moreover, the study of tridentate ligands extends beyond traditional inorganic chemistry into fields such as biochemistry and materials science. In biochemistry, understanding how tridentate ligands interact with metal ions is crucial for unraveling the mechanisms of metalloenzymes, which are enzymes that require metal ions for their catalytic activity. These insights can lead to the development of new therapeutic agents targeting specific metal-dependent biological pathways.In materials science, tridentate ligands are often employed in the design of advanced materials with unique properties. By controlling the coordination environment around metal centers, researchers can tailor the electronic and optical properties of materials for applications in electronics, photonics, and catalysis. The versatility of tridentate ligands allows for the creation of innovative materials that push the boundaries of current technology.In conclusion, the term tridentate encapsulates a vital concept in coordination chemistry that has far-reaching implications across various scientific disciplines. From enhancing the stability of metal complexes to playing pivotal roles in catalysis and biological systems, tridentate ligands are integral to our understanding of chemistry and its applications. As research continues to explore the nuances of these ligands, we can anticipate further advancements in fields ranging from medicine to materials science, all stemming from the foundational knowledge of tridentate coordination.

在化学领域,术语tridentate指的是一种配体,具有三个供体原子,能够与中心金属原子或离子结合。理解tridentate配体的概念对于从事配位化合物研究的学生和专业人士至关重要。这些配体在金属络合物的稳定性和反应性中发挥着关键作用,而这些络合物在各种化学反应和应用中都是基础。例如,与双齿或单齿配体相比,tridentate配体的存在可以显著增强金属络合物的稳定性,因为它们与金属中心之间形成了更多的键。为了说明tridentate配体的重要性,可以考虑乙二胺三乙酸(EDTA)的例子,这是一种广泛使用的螯合剂,在工业和生物学中都有应用。EDTA是一个经典的tridentate配体,可以有效地与钙和铁等金属离子结合。它形成稳定络合物的能力在水处理、医学甚至食品保存等各种应用中得到了利用。EDTA的三个结合位点允许它环绕金属离子,从而防止其参与不必要的反应,这在金属离子可能催化有害过程的生物系统中特别重要。Tridentate配体的另一个重要方面是它们在催化中的作用。在许多催化过程中,具有tridentate配体的金属络合物表现出更高的活性和选择性。这是因为三个供体原子可以在金属中心周围创建特定的空间排列,促进与底物的相互作用。例如,在不对称合成中,tridentate配体可以帮助实现更高的对映选择性,从而以更高的效率生产所需的手性分子。此外,tridentate配体的研究不仅限于传统的无机化学,还扩展到生物化学和材料科学等领域。在生物化学中,理解tridentate配体如何与金属离子相互作用对于揭示金属酶的机制至关重要,这些酶需要金属离子来催化其活性。这些见解可以导致新型治疗剂的开发,针对特定的金属依赖生物途径。在材料科学中,tridentate配体通常用于设计具有独特性质的先进材料。通过控制金属中心周围的配位环境,研究人员可以为电子学、光子学和催化等应用定制材料的电子和光学性质。tridentate配体的多功能性使得创造出推动当前技术边界的创新材料成为可能。总之,术语tridentate概括了配位化学中的一个重要概念,这在各个科学学科中具有深远的影响。从增强金属络合物的稳定性到在催化和生物系统中发挥关键作用,tridentate配体是我们理解化学及其应用的核心。随着研究继续探索这些配体的细微差别,我们可以期待在医学到材料科学等领域的进一步进展,这一切都源于对tridentate配位的基础知识。