Marshallian demand function
简明释义
马歇尔需求函数
英英释义
例句
1.The Marshallian demand function 马歇尔需求函数 helps economists predict how consumers will react to price changes.
马歇尔需求函数帮助经济学家预测消费者如何对价格变化做出反应。
2.Using the Marshallian demand function 马歇尔需求函数, we can analyze consumer behavior under different income levels.
使用马歇尔需求函数,我们可以分析不同收入水平下的消费者行为。
3.An increase in income shifts the Marshallian demand function 马歇尔需求函数 to the right, indicating higher demand.
收入的增加使马歇尔需求函数向右移动,表明需求增加。
4.In a competitive market, the Marshallian demand function 马歇尔需求函数 is essential for determining equilibrium prices.
在竞争市场中,马歇尔需求函数对于确定均衡价格至关重要。
5.The Marshallian demand function 马歇尔需求函数 takes into account the prices of related goods when estimating demand.
马歇尔需求函数在估算需求时考虑了相关商品的价格。
作文
The concept of the Marshallian demand function is a fundamental principle in microeconomics that helps us understand consumer behavior and how individuals make choices about purchasing goods and services. Named after the economist Alfred Marshall, this function describes the relationship between the quantity of a good that a consumer demands and the price of that good, while holding other factors constant. The Marshallian demand function essentially illustrates how changes in price can influence consumer demand, reflecting the basic principles of supply and demand in a market economy.To comprehend the Marshallian demand function, it is essential to recognize the concept of utility maximization. Consumers aim to maximize their satisfaction or utility when making purchasing decisions. The Marshallian demand function derives from the assumption that consumers will allocate their income in such a way that they achieve the highest level of utility possible given their budget constraints and the prices of goods. This leads to the formulation of demand curves, which graphically represent how quantity demanded changes with varying prices.One important aspect of the Marshallian demand function is its dependence on income and substitution effects. When the price of a good decreases, two things happen: consumers may buy more of that good because it is cheaper (the substitution effect), and they may also feel richer, leading them to purchase even more of the good (the income effect). Together, these effects shape the overall demand curve for a product.Moreover, the Marshallian demand function can be expressed mathematically. For example, if we denote the demand for a good as Qd, the price of the good as P, and the consumer's income as I, we can express the function as Qd = f(P, I). This equation highlights how quantity demanded (Qd) is a function of both the price of the good (P) and the consumer's income (I). By analyzing this function, economists can predict how changes in price or income levels will affect consumer demand.In practical applications, the Marshallian demand function is crucial for businesses and policymakers. Companies utilize this function to set prices strategically, ensuring they remain competitive while maximizing profits. Understanding consumer demand helps businesses forecast sales and manage inventory effectively. On the other hand, policymakers rely on the Marshallian demand function to assess the impact of taxes, subsidies, and other economic policies on consumer behavior. By understanding how price changes influence demand, they can make informed decisions that promote economic stability and growth.In conclusion, the Marshallian demand function is an indispensable tool in economics that encapsulates the intricate relationship between price, demand, and consumer behavior. By analyzing this function, we gain valuable insights into how consumers respond to price changes, enabling businesses and policymakers to make more informed decisions. As we continue to explore the complexities of economics, the Marshallian demand function remains a cornerstone of our understanding of market dynamics and consumer choice.
“马歇尔需求函数”是微观经济学中的一个基本概念,帮助我们理解消费者行为以及个人如何选择购买商品和服务。这个函数以经济学家阿尔弗雷德·马歇尔的名字命名,描述了消费者对某种商品的需求数量与该商品价格之间的关系,同时保持其他因素不变。“马歇尔需求函数”本质上说明了价格变化如何影响消费者需求,反映了市场经济中供求的基本原则。要理解“马歇尔需求函数”,首先必须认识到效用最大化的概念。消费者在做出购买决策时,旨在最大化他们的满意度或效用。“马歇尔需求函数”源于这样的假设:消费者将在其收入和商品价格的约束下,以实现尽可能高的效用水平来分配其收入。这导致了需求曲线的形成,这些曲线图形上展示了随着价格变化,需求数量如何变化。“马歇尔需求函数”的一个重要方面是它对收入和替代效应的依赖。当一种商品的价格下降时,会发生两件事:消费者可能会因为价格更便宜而购买更多该商品(替代效应),同时他们也可能感到更富有,从而导致他们购买更多该商品(收入效应)。这两种效应共同塑造了产品的总体需求曲线。此外,“马歇尔需求函数”可以用数学表达。例如,如果我们将某种商品的需求表示为Qd,该商品的价格表示为P,消费者的收入表示为I,我们可以将函数表示为Qd = f(P, I)。这个方程突显了需求数量(Qd)是商品价格(P)和消费者收入(I)的函数。通过分析这个函数,经济学家可以预测价格或收入水平的变化将如何影响消费者需求。在实际应用中,“马歇尔需求函数”对企业和政策制定者至关重要。公司利用这个函数战略性地设定价格,确保在最大化利润的同时保持竞争力。了解消费者需求帮助企业有效地预测销售和管理库存。另一方面,政策制定者依赖“马歇尔需求函数”来评估税收、补贴和其他经济政策对消费者行为的影响。通过理解价格变化如何影响需求,他们可以做出促进经济稳定和增长的明智决策。总之,“马歇尔需求函数”是经济学中不可或缺的工具,概括了价格、需求和消费者行为之间复杂的关系。通过分析这个函数,我们获得了有关消费者如何响应价格变化的宝贵见解,使企业和政策制定者能够做出更明智的决策。在我们继续探索经济学的复杂性时,“马歇尔需求函数”仍然是我们理解市场动态和消费者选择的基石。