Leontief production function

简明释义

列昂节夫生产函数

英英释义

The Leontief production function is a type of production function that assumes fixed proportions of inputs are used to produce outputs, meaning that the output cannot be increased by using more of one input without increasing the other inputs in the same fixed ratio.

Leontief生产函数是一种生产函数,它假设以固定比例使用投入来生产产出,这意味着在不增加其他投入的情况下,无法通过增加某一投入来提高产出。

例句

1.In economics, a Leontief production function 莱昂惕夫生产函数 implies fixed proportions of inputs.

在经济学中,莱昂惕夫生产函数意味着投入的固定比例。

2.The Leontief production function 莱昂惕夫生产函数 is particularly useful in industries with rigid input requirements.

在输入要求严格的行业中,莱昂惕夫生产函数特别有用。

3.The firm uses a Leontief production function 莱昂惕夫生产函数 to determine the optimal combination of inputs.

该公司使用莱昂惕夫生产函数来确定最佳的投入组合。

4.Using a Leontief production function 莱昂惕夫生产函数, the company can identify when to scale up production.

通过使用莱昂惕夫生产函数,公司可以识别何时扩大生产。

5.The analysis of the Leontief production function 莱昂惕夫生产函数 helps businesses understand their production constraints.

莱昂惕夫生产函数的分析帮助企业理解其生产限制。

作文

The concept of the Leontief production function is a significant aspect of production theory in economics. Named after the economist Wassily Leontief, this function describes a specific type of production process where inputs are used in fixed proportions to produce outputs. Unlike other production functions that may allow for substitutability between different inputs, the Leontief production function assumes that certain inputs must be combined in a rigid manner. This characteristic makes it particularly relevant in industries where production processes are standardized and cannot be easily adjusted. To better understand the implications of the Leontief production function, consider an example involving two inputs: labor and capital. In a manufacturing setting, if a factory requires one unit of labor and one unit of capital to produce one unit of output, then the production function can be represented as follows: the output is determined by the minimum of the two inputs. If there are two units of labor but only one unit of capital, the factory can only produce one unit of output. This highlights the inflexibility inherent in the Leontief production function. This rigidity can lead to inefficiencies in resource allocation. For instance, if a firm has an excess of one input but not enough of another, it cannot fully utilize its resources to increase output. Therefore, understanding the Leontief production function helps economists and business managers evaluate how to optimize production processes. Moreover, the Leontief production function plays a crucial role in input-output analysis, which examines how different sectors of the economy interact with one another. By using this function, economists can analyze how changes in one industry will affect others, providing insights into economic planning and policy-making. For instance, if the automobile industry increases its production, it will require more steel and rubber, thus impacting those industries as well. This interconnectedness is essential for understanding the broader economic landscape. In conclusion, the Leontief production function serves as a fundamental model in production theory, illustrating the constraints and interactions between different inputs in the production process. Its rigid structure provides valuable insights into resource allocation and economic interdependencies, making it an essential tool for economists and business strategists alike. Understanding this function not only aids in optimizing production but also enhances our comprehension of the intricate web of relationships within an economy. As industries continue to evolve, the principles underlying the Leontief production function remain relevant, offering guidance in navigating the complexities of modern production and economic dynamics.

“Leontief生产函数”的概念是经济学中生产理论的重要方面。这个函数以经济学家瓦西里·列昂季耶夫的名字命名,描述了一种特定类型的生产过程,其中输入以固定比例用于生产输出。与其他可能允许不同输入之间替代性的生产函数不同,Leontief生产函数假设某些输入必须以严格的方式组合。这一特性使其在生产过程标准化且难以调整的行业中特别相关。为了更好地理解Leontief生产函数的含义,可以考虑一个涉及两个输入的例子:劳动和资本。在制造环境中,如果一家工厂需要一个单位的劳动和一个单位的资本来生产一个单位的输出,那么生产函数可以表示为:输出由两个输入中的最小值决定。如果有两个单位的劳动,但只有一个单位的资本,工厂只能生产一个单位的输出。这突显了Leontief生产函数固有的灵活性不足。这种刚性可能导致资源配置中的低效率。例如,如果一家公司拥有一种输入的过剩,但另一种输入不足,它无法充分利用其资源来增加输出。因此,理解Leontief生产函数帮助经济学家和企业管理者评估如何优化生产过程。此外,Leontief生产函数在投入产出分析中发挥着至关重要的作用,该分析研究经济中不同部门之间的相互作用。通过使用这个函数,经济学家可以分析一个行业的变化将如何影响其他行业,从而为经济规划和政策制定提供见解。例如,如果汽车工业增加其生产,它将需要更多的钢铁和橡胶,从而影响这些行业。这种相互联系对于理解更广泛的经济格局至关重要。总之,Leontief生产函数作为生产理论中的基本模型,说明了生产过程中不同输入之间的约束和相互作用。其刚性结构为资源配置和经济相互依赖性提供了宝贵的见解,使其成为经济学家和商业战略家不可或缺的工具。理解这一函数不仅有助于优化生产,还增强了我们对经济内复杂关系网络的理解。随着行业的不断发展,Leontief生产函数背后的原则仍然相关,为应对现代生产和经济动态的复杂性提供指导。

相关单词

production

production详解:怎么读、什么意思、用法