Cobb—Douglas production function
简明释义
柯布--道格拉斯生产函数
英英释义
例句
1.The parameters of the Cobb—Douglas production function 科布-道格拉斯生产函数 can be estimated using regression analysis.
科布-道格拉斯生产函数的参数可以通过回归分析进行估计。
2.Many economists prefer the Cobb—Douglas production function 科布-道格拉斯生产函数 because it assumes constant returns to scale.
许多经济学家更喜欢科布-道格拉斯生产函数,因为它假设规模报酬不变。
3.The Cobb—Douglas production function 科布-道格拉斯生产函数 is widely used in economics to represent the relationship between two or more inputs and the amount of output produced.
科布-道格拉斯生产函数在经济学中被广泛用于表示两个或多个投入与产出之间的关系。
4.To assess the impact of technology on production, we applied a Cobb—Douglas production function 科布-道格拉斯生产函数 framework.
为了评估技术对生产的影响,我们应用了科布-道格拉斯生产函数框架。
5.In our model, we utilized the Cobb—Douglas production function 科布-道格拉斯生产函数 to analyze how labor and capital contribute to overall productivity.
在我们的模型中,我们利用科布-道格拉斯生产函数分析劳动和资本如何对整体生产力作出贡献。
作文
The Cobb—Douglas production function is a fundamental concept in economics that describes the relationship between two or more inputs and the amount of output produced. This function is named after economists Charles Cobb and Paul Douglas, who introduced it in the early 20th century. The Cobb—Douglas production function is particularly significant because it provides a simple yet powerful way to analyze how different factors of production contribute to overall output. In its most basic form, the Cobb—Douglas production function can be expressed as: Y = A * L^α * K^β, where Y represents total output, A is a constant that reflects technology level, L is the amount of labor used, K is the amount of capital utilized, and α and β are the output elasticities of labor and capital, respectively. These elasticities measure the percentage change in output resulting from a percentage change in either labor or capital, assuming all other factors remain constant. One of the key features of the Cobb—Douglas production function is its assumption of diminishing returns. This means that as more units of labor or capital are added, the additional output generated from each new unit will eventually decrease. For instance, if a factory hires more workers while keeping machinery constant, there will come a point where each additional worker contributes less to total production than the previous one. This property is essential for understanding how firms optimize their production processes and allocate resources efficiently.Another important aspect of the Cobb—Douglas production function is its ability to exhibit constant returns to scale. When both inputs are increased by a certain percentage, the output increases by the same percentage. This characteristic allows economists to analyze how economies of scale can affect production efficiency and cost structures. For example, if a company doubles its labor and capital inputs, the Cobb—Douglas production function suggests that it would also double its output, assuming that the technology remains unchanged.The Cobb—Douglas production function has been widely used in various fields, including agriculture, manufacturing, and services. It helps economists and business analysts understand the productivity of different industries and make informed decisions regarding resource allocation. Moreover, it serves as a foundation for more complex production models that incorporate additional variables and constraints.In conclusion, the Cobb—Douglas production function is an essential tool for analyzing production processes in economics. Its simplicity and versatility make it applicable across different sectors and scenarios. By understanding the relationships between inputs and outputs, businesses can optimize their operations and improve overall efficiency. As we continue to explore the dynamics of production and resource management, the insights gained from the Cobb—Douglas production function will remain invaluable for economists and decision-makers alike.
Cobb—Douglas生产函数是经济学中的一个基本概念,描述了两个或多个投入与所产生的产出之间的关系。这个函数以经济学家查尔斯·科布和保罗·道格拉斯的名字命名,他们在20世纪初提出了这一理论。Cobb—Douglas生产函数特别重要,因为它提供了一种简单而强大的方法来分析不同生产要素如何对整体产出做出贡献。在其最基本的形式中,Cobb—Douglas生产函数可以表示为:Y = A * L^α * K^β,其中Y代表总产出,A是反映技术水平的常数,L是使用的劳动量,K是利用的资本量,α和β分别是劳动和资本的产出弹性。这些弹性测量了在假设其他因素保持不变的情况下,产出因劳动或资本的百分比变化而发生的百分比变化。Cobb—Douglas生产函数的一个关键特征是其对递减收益的假设。这意味着随着更多的劳动或资本单位的增加,每个新单位所产生的额外产出最终会减少。例如,如果一家工厂在保持机械设备不变的情况下雇佣更多工人,那么每增加一名工人对总生产的贡献将会低于前一名工人。这一特性对于理解企业如何优化生产过程和有效配置资源至关重要。Cobb—Douglas生产函数的另一个重要方面是其能够表现出规模报酬不变。当两种投入都增加一定比例时,产出也会按相同比例增加。这一特性使经济学家能够分析规模经济如何影响生产效率和成本结构。例如,如果一家公司将劳动和资本投入都翻倍,则Cobb—Douglas生产函数表明,假设技术保持不变,它的产出也会翻倍。Cobb—Douglas生产函数已广泛应用于农业、制造业和服务业等多个领域。它帮助经济学家和商业分析师理解不同产业的生产力,并就资源配置做出明智的决策。此外,它还为更复杂的生产模型奠定了基础,这些模型包含额外的变量和约束。总之,Cobb—Douglas生产函数是分析经济学中生产过程的重要工具。它的简单性和多功能性使其适用于不同的行业和场景。通过理解投入与产出之间的关系,企业可以优化运营,提高整体效率。随着我们继续探索生产和资源管理的动态,从Cobb—Douglas生产函数中获得的见解将对经济学家和决策者来说仍然是无价的。
相关单词