virtual ampere-turns

简明释义

有效安匝

英英释义

Virtual ampere-turns refer to a theoretical measure of magnetomotive force in a magnetic circuit, representing the product of the current flowing through a coil and the number of turns in that coil, used to analyze the behavior of magnetic fields.

虚拟安培匝数是指在磁路中对磁动势的理论测量,表示流过线圈的电流与线圈匝数的乘积,用于分析磁场的行为。

例句

1.The design of the transformer requires calculating the virtual ampere-turns 虚拟安匝 to ensure optimal performance.

变压器的设计需要计算虚拟安匝 virtual ampere-turns以确保最佳性能。

2.In this circuit simulation, we can visualize the effect of virtual ampere-turns 虚拟安匝 on magnetic field strength.

在这个电路仿真中,我们可以可视化虚拟安匝 virtual ampere-turns对磁场强度的影响。

3.When designing a motor, understanding virtual ampere-turns 虚拟安匝 helps in optimizing torque output.

在设计电动机时,了解虚拟安匝 virtual ampere-turns有助于优化扭矩输出。

4.The calculation of virtual ampere-turns 虚拟安匝 is crucial for determining the required core size in inductors.

计算虚拟安匝 virtual ampere-turns对于确定电感器所需的磁芯大小至关重要。

5.Engineers often use virtual ampere-turns 虚拟安匝 to analyze the efficiency of coil windings.

工程师通常使用虚拟安匝 virtual ampere-turns来分析线圈绕组的效率。

作文

In the realm of electrical engineering, concepts can often seem abstract and complex. One such concept is the idea of virtual ampere-turns, which plays a crucial role in understanding magnetic circuits and their behavior. To grasp this term, it is essential to first comprehend what ampere-turns represent. Ampere-turns are a measure of the magnetomotive force (MMF) in a magnetic circuit, calculated by multiplying the current flowing through a coil by the number of turns in that coil. This measurement helps engineers assess how effectively a coil can generate a magnetic field. However, when we introduce the term virtual ampere-turns, we enter a more sophisticated discussion about the behavior of magnetic fields in various configurations.The concept of virtual ampere-turns arises primarily in the analysis of magnetic circuits that do not conform to simple geometries or where the magnetic path is not straightforward. For instance, in complex inductive systems or in transformers, the actual physical configuration may lead to non-uniform magnetic fields. In such cases, virtual ampere-turns serve as a theoretical tool to simplify calculations and provide insights into the magnetic behavior of the system without requiring precise measurements of every variable involved.When engineers refer to virtual ampere-turns, they often do so in the context of finite element analysis (FEA) or other computational methods used to simulate magnetic fields. By employing these virtual quantities, they can predict how changes in design or material properties will affect the overall performance of an electromagnetic system. This predictive capability is invaluable in the design process, allowing for optimization before any physical prototypes are built.Furthermore, the use of virtual ampere-turns extends beyond just theoretical calculations; it has practical implications in the design of electric machines, transformers, and inductors. For example, in transformer design, understanding how virtual ampere-turns behave can help engineers minimize losses and enhance efficiency. By accurately modeling the magnetic circuit with these virtual quantities, they can ensure that the transformer operates within its optimal range, reducing the risk of saturation and improving overall reliability.In addition to practical applications, virtual ampere-turns also facilitate better communication among engineers. When discussing designs or troubleshooting issues, using a common framework based on these virtual quantities allows for clearer discussions and more effective collaboration. It helps bridge the gap between theoretical principles and practical applications, ensuring that all team members are on the same page regarding the magnetic behaviors at play.In conclusion, the concept of virtual ampere-turns is an essential aspect of modern electrical engineering that enhances our understanding of magnetic circuits. By providing a way to analyze complex systems without the need for exhaustive measurements, virtual ampere-turns serve as a powerful tool in both design and analysis. As technology continues to evolve, the importance of such virtual quantities will only grow, allowing engineers to innovate and optimize their designs in increasingly efficient ways. Understanding and mastering the concept of virtual ampere-turns is thus vital for anyone looking to excel in the field of electrical engineering.

在电气工程领域,概念往往显得抽象而复杂。其中一个概念是虚拟安培匝数,它在理解磁路及其行为中起着至关重要的作用。要掌握这个术语,首先必须理解安培匝数所代表的意义。安培匝数是磁路中磁动势(MMF)的量度,通过将流过线圈的电流与该线圈的匝数相乘来计算。这个测量帮助工程师评估线圈产生磁场的有效性。然而,当我们引入虚拟安培匝数这一术语时,就进入了关于各种配置中磁场行为的更复杂讨论。虚拟安培匝数的概念主要出现在分析不符合简单几何形状的磁路,或者磁路径不直接的情况下。例如,在复杂的感应系统或变压器中,实际的物理配置可能导致非均匀的磁场。在这种情况下,虚拟安培匝数作为一种理论工具,可以简化计算,并提供有关系统磁行为的洞见,而无需对涉及的每个变量进行精确测量。当工程师提到虚拟安培匝数时,他们通常是在有限元分析(FEA)或其他用于模拟磁场的计算方法的背景下进行讨论。通过采用这些虚拟量,他们可以预测设计或材料属性的变化将如何影响电磁系统的整体性能。这种预测能力在设计过程中是无价的,使得在构建任何物理原型之前进行优化成为可能。此外,虚拟安培匝数的使用不仅限于理论计算;它在电机、变压器和电感器的设计中也具有实际意义。例如,在变压器设计中,理解虚拟安培匝数的行为可以帮助工程师最小化损耗并提高效率。通过准确地用这些虚拟量建模磁路,他们可以确保变压器在最佳范围内运行,从而减少饱和风险并提高整体可靠性。除了实际应用,虚拟安培匝数还促进了工程师之间更好的沟通。当讨论设计或排除故障问题时,基于这些虚拟量使用共同框架使得讨论更加清晰,协作更加有效。它帮助弥合理论原则与实际应用之间的差距,确保所有团队成员在磁行为方面保持一致。总之,虚拟安培匝数的概念是现代电气工程中一个重要的方面,它增强了我们对磁路的理解。通过提供一种分析复杂系统的方法,而无需进行详尽的测量,虚拟安培匝数成为设计和分析中的一种强大工具。随着技术的不断发展,这些虚拟量的重要性只会增加,使工程师能够以越来越高效的方式进行创新和优化。因此,理解和掌握虚拟安培匝数的概念对于任何希望在电气工程领域取得成功的人来说都是至关重要的。

相关单词

virtual

virtual详解:怎么读、什么意思、用法