voltage strength
简明释义
电压强度
英英释义
Voltage strength refers to the maximum voltage that a material or electrical component can withstand without breaking down or failing. | 电压强度指的是材料或电气元件在不发生击穿或故障的情况下可以承受的最大电压。 |
例句
1.Testing the voltage strength 电压强度 of cables is essential before installation.
在安装之前,测试电缆的电压强度 voltage strength 是至关重要的。
2.The transformer is designed to handle a maximum voltage strength 电压强度 of 25 kV.
这个变压器设计用于处理最大电压强度 voltage strength 为25千伏。
3.In high voltage applications, ensuring the voltage strength 电压强度 is crucial for safety.
在高压应用中,确保电压强度 voltage strength 对于安全至关重要。
4.The electrical system failed due to insufficient voltage strength 电压强度 in the supply lines.
由于供电线路中的电压强度 voltage strength 不足,电气系统出现故障。
5.The insulation material must withstand the voltage strength 电压强度 without breaking down.
绝缘材料必须能够承受电压强度 voltage strength 而不发生击穿。
作文
Understanding the concept of voltage strength is essential for anyone venturing into the field of electrical engineering or physics. Voltage strength refers to the ability of an electrical component or system to withstand high voltage without breaking down or failing. This characteristic is crucial in designing safe and efficient electrical systems. Without a proper understanding of voltage strength, engineers may inadvertently create systems that are prone to failure, leading to dangerous situations such as short circuits or fires.One of the primary factors influencing voltage strength is the material used in the construction of electrical components. Different materials have varying capacities to resist electrical breakdown. For instance, insulators like rubber and glass have high voltage strength, making them ideal for protecting conductors and preventing unintended electrical flow. Conversely, materials like wood or certain plastics may not offer sufficient protection, especially under high voltage conditions.Furthermore, the design of electrical systems must take into account environmental factors that can affect voltage strength. Factors such as temperature, humidity, and pollution can significantly impact the performance of insulating materials. For example, increased humidity can reduce the voltage strength of insulators, making them more susceptible to breakdown. Therefore, engineers must consider these variables when selecting materials and designing systems.In addition to material properties, the geometry of electrical components also plays a vital role in determining voltage strength. The distance between conductive parts, known as the creepage distance, is critical in ensuring that electrical arcs do not occur. A greater creepage distance allows for higher voltage strength, as it provides a longer path for electricity to travel, reducing the likelihood of a breakdown.To measure voltage strength, various tests are conducted, including dielectric strength tests and insulation resistance tests. These tests help determine how much voltage a material can withstand before failing. Understanding the results of these tests is crucial for engineers, as it enables them to select appropriate materials and designs for their specific applications.Moreover, the implications of voltage strength extend beyond just component safety. In power distribution systems, ensuring adequate voltage strength is vital for maintaining the reliability of electrical supply. If components fail due to inadequate voltage strength, it can lead to widespread power outages and equipment damage, resulting in significant economic losses.In conclusion, mastering the concept of voltage strength is indispensable for professionals in the electrical field. It encompasses a variety of factors, including material properties, environmental influences, and geometric considerations. By comprehensively understanding voltage strength, engineers can design safer and more reliable electrical systems that meet the demands of modern technology. Ultimately, a solid grasp of this concept not only enhances the performance of electrical systems but also ensures the safety of users and equipment alike.
理解电压强度的概念对于任何进入电气工程或物理领域的人来说都是至关重要的。电压强度指的是电气元件或系统在不发生故障的情况下承受高电压的能力。这个特性对于设计安全和高效的电气系统至关重要。如果没有对电压强度的正确理解,工程师可能会无意中创建出容易发生故障的系统,从而导致短路或火灾等危险情况。影响电压强度的主要因素之一是用于电气元件构造的材料。不同材料具有不同的抵抗电气击穿的能力。例如,橡胶和玻璃等绝缘体具有高电压强度,使它们成为保护导体和防止意外电流流动的理想选择。相反,木材或某些塑料等材料可能无法提供足够的保护,特别是在高电压条件下。此外,电气系统的设计必须考虑可能影响电压强度的环境因素。温度、湿度和污染等因素可以显著影响绝缘材料的性能。例如,湿度增加会降低绝缘体的电压强度,使其更容易发生击穿。因此,工程师在选择材料和设计系统时必须考虑这些变量。除了材料特性外,电气元件的几何形状也在确定电压强度方面起着至关重要的作用。导电部分之间的距离,称为爬电距离,对于确保电弧不会发生至关重要。较大的爬电距离允许更高的电压强度,因为它提供了电流流动的更长路径,从而减少了击穿的可能性。为了测量电压强度,进行各种测试,包括介电强度测试和绝缘电阻测试。这些测试有助于确定材料在失效之前能够承受多少电压。理解这些测试结果对于工程师至关重要,因为这使他们能够为特定应用选择合适的材料和设计。此外,电压强度的影响不仅限于元件安全。在电力分配系统中,确保足够的电压强度对于维持电力供应的可靠性至关重要。如果由于不足的电压强度导致元件故障,可能会导致广泛的停电和设备损坏,从而造成重大经济损失。总之,掌握电压强度的概念对电气领域的专业人士来说是不可或缺的。它涵盖了多种因素,包括材料特性、环境影响和几何考虑。通过全面理解电压强度,工程师可以设计出更安全、更可靠的电气系统,以满足现代技术的需求。最终,对这一概念的扎实掌握不仅提高了电气系统的性能,还确保了用户和设备的安全。
相关单词