unit tensile stress

简明释义

单位抗拉应力

英英释义

Unit tensile stress is the amount of tensile (pulling) force applied per unit area of a material, typically measured in pascals (Pa) or pounds per square inch (psi).

单位拉伸应力是施加在材料每单位面积上的拉力(拉伸力),通常以帕斯卡(Pa)或每平方英寸磅(psi)为单位进行测量。

例句

1.The unit tensile stress 单位拉伸应力 affects how a bridge can handle loads over time.

单位拉伸应力 单位拉伸应力影响桥梁如何随时间承受负载。

2.The material can withstand a maximum unit tensile stress 单位拉伸应力 of 500 MPa before failing.

该材料在失效之前可以承受最大单位拉伸应力 单位拉伸应力为500 MPa。

3.Engineers must calculate the unit tensile stress 单位拉伸应力 to ensure safety in structural designs.

工程师必须计算单位拉伸应力 单位拉伸应力以确保结构设计的安全性。

4.When testing materials, we often measure the unit tensile stress 单位拉伸应力 at which they yield.

在测试材料时,我们通常测量它们屈服时的单位拉伸应力 单位拉伸应力

5.Different materials have varying unit tensile stress 单位拉伸应力 limits, which influence their applications.

不同材料具有不同的单位拉伸应力 单位拉伸应力极限,这影响它们的应用。

作文

Understanding the concept of unit tensile stress is crucial for anyone studying materials science or engineering. Unit tensile stress is defined as the force applied per unit area of a material in tension. This concept is fundamental in determining how materials behave under various loads and conditions. When a force is applied to a material, it experiences deformation, and the extent of this deformation is influenced by the unit tensile stress acting on it. In practical terms, unit tensile stress is measured in pascals (Pa) or pounds per square inch (psi), depending on the system of measurement being used. For example, if a steel rod with a cross-sectional area of 10 square millimeters is subjected to a tensile force of 1000 newtons, the unit tensile stress can be calculated by dividing the force by the area. In this case, the calculation would be 1000 N / 10 mm², which equals 100 N/mm² or 100 MPa. This value indicates the amount of stress that the material can withstand before it starts to deform permanently or fail.The significance of unit tensile stress extends beyond simple calculations; it plays a vital role in the design and analysis of structures and components. Engineers must ensure that the materials selected for a project can handle the expected unit tensile stress without compromising safety or functionality. For instance, when designing bridges, buildings, or machinery, understanding the unit tensile stress helps engineers choose the appropriate materials and dimensions to prevent catastrophic failures.Additionally, different materials exhibit varying responses to unit tensile stress. Metals, for example, tend to have a high tensile strength, allowing them to endure significant forces before yielding. In contrast, materials like plastics may have lower tensile strengths and can fail at lower unit tensile stress levels. This knowledge is essential for engineers to predict how materials will behave in real-world applications.Moreover, factors such as temperature, strain rate, and environmental conditions can influence the unit tensile stress experienced by a material. Engineers must account for these variables when designing components that will operate under diverse conditions. For example, materials used in aerospace applications must withstand extreme temperatures and pressures, making it imperative to understand their unit tensile stress limits.In conclusion, a comprehensive understanding of unit tensile stress is essential for professionals in fields like engineering and materials science. It not only aids in the selection of appropriate materials but also ensures that designs are safe and functional under expected loading conditions. By mastering this concept, engineers can contribute to the development of safe and efficient structures and systems that meet the demands of modern society.

理解单位拉伸应力的概念对于任何学习材料科学或工程的人来说都是至关重要的。单位拉伸应力被定义为施加在材料上的每单位面积的拉伸力。这个概念在确定材料在各种载荷和条件下的行为中是基础性的。当施加一个力到材料上时,它会经历变形,而这种变形的程度受到作用于它的单位拉伸应力的影响。在实际应用中,单位拉伸应力以帕斯卡(Pa)或每平方英寸磅(psi)为单位进行测量,具体取决于使用的测量系统。例如,如果一根截面积为10平方毫米的钢杆受到1000牛顿的拉伸力,则可以通过将力除以面积来计算单位拉伸应力。在这种情况下,计算为1000 N / 10 mm²,等于100 N/mm²或100 MPa。这个值表示材料在开始永久变形或失效之前能够承受的应力量。单位拉伸应力的重要性不仅仅体现在简单的计算上;它在结构和组件的设计与分析中发挥着至关重要的作用。工程师必须确保为项目选择的材料能够承受预期的单位拉伸应力,而不会妨碍安全或功能。例如,在设计桥梁、建筑物或机械时,了解单位拉伸应力帮助工程师选择合适的材料和尺寸,以防止灾难性的故障。此外,不同材料对单位拉伸应力的反应各不相同。例如,金属通常具有高拉伸强度,使其能够在屈服之前承受显著的力量。相比之下,像塑料这样的材料可能具有较低的拉伸强度,并且在较低的单位拉伸应力水平下就会失效。这些知识对于工程师预测材料在实际应用中的表现至关重要。此外,温度、应变速率和环境条件等因素也会影响材料所承受的单位拉伸应力。工程师在设计将在不同条件下运行的组件时,必须考虑这些变量。例如,用于航空航天应用的材料必须承受极端的温度和压力,因此了解其单位拉伸应力限制是至关重要的。总之,全面理解单位拉伸应力对于工程和材料科学领域的专业人士来说至关重要。它不仅有助于选择合适的材料,还确保设计在预期载荷条件下是安全和功能性的。通过掌握这一概念,工程师可以为开发满足现代社会需求的安全高效的结构和系统做出贡献。

相关单词

unit

unit详解:怎么读、什么意思、用法