two's complement
简明释义
补码
英英释义
A mathematical operation on binary numbers that allows for the representation of negative values in a binary system by inverting the bits and adding one. | 一种对二进制数的数学运算,允许在二进制系统中通过反转位并加一来表示负值。 |
例句
1.When performing binary arithmetic, always remember to check the overflow when using two's complement 二进制补码.
在进行二进制运算时,使用二进制补码 two's complement 时一定要记得检查溢出。
2.In digital electronics, numbers are often represented using two's complement 二进制补码 to simplify arithmetic operations.
在数字电子学中,数字通常使用二进制补码 two's complement 来简化算术运算。
3.The two's complement 二进制补码 system is widely used in computer systems for representing negative numbers.
在计算机系统中,二进制补码 two's complement 系统被广泛用于表示负数。
4.To convert a negative binary number to its positive equivalent, you can use the two's complement 二进制补码 method.
要将负二进制数转换为其正值,可以使用二进制补码 two's complement 方法。
5.The two's complement 二进制补码 representation allows for easy addition and subtraction of signed integers.
使用二进制补码 two's complement 表示法可以轻松进行带符号整数的加法和减法。
作文
The concept of two's complement is fundamental in computer science and digital electronics, particularly in the representation of signed integers. It is a method for encoding negative numbers in a binary system, allowing computers to perform arithmetic operations more efficiently. Understanding two's complement is essential for anyone interested in programming, computer architecture, or digital logic design. To grasp the idea of two's complement, we first need to understand how binary numbers work. In a binary system, each digit represents a power of two, similar to how each digit in the decimal system represents a power of ten. For example, the binary number 1011 represents the decimal number 11, calculated as 1*2^3 + 0*2^2 + 1*2^1 + 1*2^0.When it comes to representing negative numbers, traditional binary systems can be cumbersome because they only represent positive values. This is where two's complement comes into play. The basic idea behind two's complement is that the most significant bit (MSB) of a binary number indicates its sign: if the MSB is 0, the number is positive; if it is 1, the number is negative. To find the two's complement of a binary number, you follow a simple process: first, invert all the bits (change 0s to 1s and 1s to 0s), and then add 1 to the least significant bit (LSB). For example, let's take the binary number 0101, which represents the decimal number 5. To find its two's complement: 1. Invert the bits: 0101 becomes 1010. 2. Add 1: 1010 + 0001 = 1011. Thus, the two's complement of 5 (0101) is 1011, which represents -5 in a 4-bit binary system. One of the main advantages of using two's complement is that it simplifies the design of arithmetic circuits in computers. When adding two binary numbers, whether they are positive or negative, the same addition circuitry can be used without any modifications. This is because the two's complement representation allows for straightforward binary addition, and if the result exceeds the maximum value representable within the given number of bits, the overflow can be ignored. Moreover, two's complement also allows for easy comparison between numbers. Since the MSB indicates the sign, comparing two numbers becomes a matter of looking at the MSB first, followed by the remaining bits if necessary. This property is particularly useful when implementing algorithms that rely on sorting or searching through lists of integers. In conclusion, the understanding of two's complement is crucial for anyone working with digital systems. It provides an efficient way to represent both positive and negative integers and facilitates easier arithmetic operations. As technology continues to advance, the significance of two's complement in the realm of computing remains ever-present, making it an essential topic for study and application in various fields of computer science. In summary, two's complement offers a robust solution for handling signed integers in binary form, ensuring that computers can perform calculations reliably and effectively.
“二进制补码”是计算机科学和数字电子学中的一个基本概念,尤其是在有符号整数的表示方面。它是一种在二进制系统中编码负数的方法,使计算机能够更有效地执行算术运算。理解“二进制补码”对任何对编程、计算机架构或数字逻辑设计感兴趣的人来说都是必不可少的。要掌握“二进制补码”的概念,我们首先需要理解二进制数是如何工作的。在二进制系统中,每个数字代表一个2的幂,类似于十进制系统中每个数字代表一个10的幂。例如,二进制数1011表示十进制数11,计算方式为1×2^3 + 0×2^2 + 1×2^1 + 1×2^0。当涉及到表示负数时,传统的二进制系统可能会显得笨拙,因为它们只能表示正值。这就是“二进制补码”发挥作用的地方。“二进制补码”的基本思想是二进制数的最高有效位(MSB)表示其符号:如果MSB为0,则该数为正;如果为1,则该数为负。要找到一个二进制数的“二进制补码”,你可以遵循一个简单的过程:首先,反转所有位(将0变为1,将1变为0),然后在最低有效位(LSB)上加1。例如,让我们以二进制数0101为例,它表示十进制数5。要找到它的“二进制补码”:1. 反转位:0101变为1010。2. 加1:1010 + 0001 = 1011。因此,5(0101)的“二进制补码”是1011,它在4位二进制系统中表示-5。使用“二进制补码”的主要优点之一是它简化了计算机中算术电路的设计。当添加两个二进制数时,无论它们是正还是负,都可以使用相同的加法电路,而无需进行任何修改。这是因为“二进制补码”表示法允许直接的二进制加法,如果结果超过给定位数可以表示的最大值,则可以忽略溢出。此外,“二进制补码”还允许轻松比较数字。由于MSB表示符号,因此比较两个数字变成了首先查看MSB,然后再查看其余位(如有必要)。这一特性在实现依赖于对整数列表进行排序或搜索的算法时尤为有用。总之,理解“二进制补码”对于任何从事数字系统工作的人来说都是至关重要的。它提供了一种有效的方法来表示正负整数,并简化了算术运算。随着技术的不断进步,“二进制补码”在计算领域的重要性依然存在,使其成为计算机科学各个领域研究和应用的一个重要主题。总之,“二进制补码”提供了一种可靠的解决方案,用于以二进制形式处理有符号整数,确保计算机能够可靠有效地执行计算。