turbine inlet temperature
简明释义
涡轮机入口温度
英英释义
例句
1.The engine's performance is heavily influenced by the turbine inlet temperature, which determines its efficiency.
发动机的性能受到涡轮进气温度的严重影响,这决定了其效率。
2.A rise in turbine inlet temperature can indicate potential engine problems.
涡轮进气温度的升高可能表明潜在的发动机问题。
3.Monitoring the turbine inlet temperature is crucial for optimizing fuel consumption.
监测涡轮进气温度对于优化燃料消耗至关重要。
4.The turbine inlet temperature must be controlled to prevent overheating.
涡轮进气温度必须被控制以防止过热。
5.Engine designers aim to maximize the turbine inlet temperature for better performance.
发动机设计师的目标是最大化涡轮进气温度以提高性能。
作文
The performance and efficiency of gas turbines are significantly influenced by various factors, one of the most critical being the turbine inlet temperature. This term refers to the temperature of the gases entering the turbine, which plays a crucial role in determining the overall efficiency and power output of the turbine. In simple terms, the higher the turbine inlet temperature (涡轮进气温度), the more energy can be extracted from the fuel, leading to increased power generation. However, it is essential to balance this with the durability and material limits of the turbine components.Gas turbines operate on the Brayton cycle, where air is compressed, mixed with fuel, and ignited to produce high-temperature, high-pressure gases. These gases then expand through the turbine, generating mechanical energy. The turbine inlet temperature is typically measured after the combustion process and before the gases enter the turbine blades. Engineers strive to maximize this temperature to improve efficiency, but they must also consider the thermal limits of the materials used in the turbine construction.One of the primary methods of increasing the turbine inlet temperature (涡轮进气温度) is through advanced cooling techniques. Modern gas turbines often use sophisticated cooling systems to protect turbine blades from the extreme heat generated during operation. These cooling systems can include air cooling, film cooling, and even the use of advanced materials that can withstand higher temperatures. By effectively managing the heat, engineers can push the turbine inlet temperature higher without compromising the integrity of the turbine.Another important aspect to consider is the impact of environmental conditions on the turbine inlet temperature. For instance, higher ambient temperatures can lead to lower air density, which in turn affects the mass flow rate into the turbine. This means that during hot weather, the turbine inlet temperature may be less effective at achieving optimal performance. Therefore, operators must take into account the surrounding environment when planning for optimal turbine operation.Additionally, advancements in technology have led to the development of new materials and coatings that can withstand higher turbine inlet temperatures (涡轮进气温度). These innovations allow for greater efficiency and power output without sacrificing reliability. Research into superalloys and ceramic matrix composites has opened up new possibilities for turbine design, enabling engineers to create turbines that can operate safely at elevated temperatures.In conclusion, the turbine inlet temperature is a vital parameter in the operation of gas turbines. It directly influences efficiency, power output, and the longevity of turbine components. Understanding how to optimize this temperature through advanced cooling techniques, material science, and consideration of environmental factors is essential for engineers in the field. As technology continues to evolve, the quest for higher turbine inlet temperatures will remain a key focus for improving the performance of gas turbines worldwide.
燃气轮机的性能和效率受到多种因素的显著影响,其中最关键的一个就是涡轮进气温度。这个术语指的是进入涡轮的气体的温度,这在决定涡轮的整体效率和功率输出方面起着至关重要的作用。简单来说,涡轮进气温度越高,从燃料中提取的能量就越多,从而导致发电量的增加。然而,必须平衡这一点与涡轮组件的耐久性和材料限制。燃气轮机在布雷顿循环中运行,空气被压缩,与燃料混合并点燃,以产生高温高压气体。这些气体随后通过涡轮膨胀,产生机械能。涡轮进气温度通常是在燃烧过程后、气体进入涡轮叶片之前测量的。工程师努力最大化这一温度以提高效率,但他们也必须考虑涡轮构造中使用材料的热限制。提高涡轮进气温度(涡轮进气温度)的主要方法之一是通过先进的冷却技术。现代燃气轮机通常使用复杂的冷却系统来保护涡轮叶片免受操作过程中产生的极端热量的影响。这些冷却系统可以包括空气冷却、膜冷却,甚至使用能够承受更高温度的先进材料。通过有效管理热量,工程师可以将涡轮进气温度推得更高,而不会损害涡轮的完整性。另一个重要的方面是环境条件对涡轮进气温度的影响。例如,较高的环境温度会导致空气密度降低,这反过来又影响进入涡轮的质量流量。这意味着在炎热的天气中,涡轮进气温度可能在实现最佳性能方面效果不佳。因此,操作人员在规划最佳涡轮操作时,必须考虑周围的环境。此外,技术的进步导致了新材料和涂层的发展,这些材料和涂层能够承受更高的涡轮进气温度(涡轮进气温度)。这些创新使得在不牺牲可靠性的情况下,能够实现更高的效率和功率输出。对超合金和陶瓷基复合材料的研究为涡轮设计开辟了新的可能性,使工程师能够制造出能够在升高温度下安全运行的涡轮。总之,涡轮进气温度是燃气轮机运行中的一个重要参数。它直接影响效率、功率输出和涡轮组件的使用寿命。理解如何通过先进的冷却技术、材料科学以及考虑环境因素来优化这一温度,对于该领域的工程师至关重要。随着技术的不断发展,追求更高的涡轮进气温度将仍然是提高全球燃气轮机性能的关键焦点。
相关单词