total mean power

简明释义

总平均功率

英英释义

Total mean power refers to the average amount of energy transferred or converted per unit time across a system, often measured in watts.

总平均功率是指在一个系统中每单位时间内传递或转换的能量的平均量,通常以瓦特为单位测量。

例句

1.The engineer calculated the total mean power 总平均功率 output of the solar panels to ensure they met the energy needs.

工程师计算了太阳能电池板的总平均功率 总平均功率输出,以确保它们满足能源需求。

2.To optimize the system, we need to monitor the total mean power 总平均功率 consumption over a period of time.

为了优化系统,我们需要监测一段时间内的总平均功率 总平均功率消耗。

3.After analyzing the data, we found that the total mean power 总平均功率 usage increased during peak hours.

在分析数据后,我们发现总平均功率 总平均功率的使用在高峰时段增加。

4.The total mean power 总平均功率 rating of the generator is crucial for determining its efficiency.

发电机的总平均功率 总平均功率评级对于确定其效率至关重要。

5.The researchers reported the total mean power 总平均功率 output of the wind turbines in their latest study.

研究人员在他们最新的研究中报告了风力涡轮机的总平均功率 总平均功率输出。

作文

In the realm of physics and engineering, understanding the concept of total mean power is crucial for analyzing various systems. The term total mean power refers to the average amount of energy transferred or converted per unit time in a given system over a specified period. This measurement is essential in fields such as electrical engineering, mechanical systems, and thermodynamics, where energy efficiency and performance are of paramount importance.To illustrate the significance of total mean power, let us consider an example from electrical engineering. When designing a circuit, engineers must calculate the total mean power consumed by the components within that circuit. This calculation allows them to determine whether the power supply can adequately support the load and ensures that the circuit operates safely without overheating or failing. If the total mean power exceeds the capacity of the power supply, it could lead to catastrophic failures, making this concept vital for practical applications.Moreover, the total mean power can also be applied to mechanical systems, such as engines or turbines. In these systems, engineers analyze the total mean power output to assess their efficiency. By measuring how much work is done over a period, they can optimize designs to achieve higher performance while minimizing energy loss. For instance, in a car engine, understanding the total mean power generated during operation helps manufacturers create vehicles that are both powerful and fuel-efficient.In the context of thermodynamics, the total mean power is equally important. It allows scientists and engineers to evaluate heat transfer processes and energy conversion efficiencies. For example, in a power plant, the total mean power produced must be carefully monitored to ensure that it meets the demand for electricity while adhering to environmental regulations. By optimizing the total mean power, power plants can reduce emissions and improve sustainability.Furthermore, the concept of total mean power extends beyond theoretical calculations; it has real-world implications. In renewable energy systems, such as wind turbines and solar panels, understanding the total mean power generated is essential for evaluating the viability and effectiveness of these technologies. By analyzing the total mean power output, engineers can determine the best locations for installations, predict energy production, and make informed decisions about investments in renewable resources.In conclusion, the term total mean power encapsulates a fundamental concept in physics and engineering that plays a critical role in the design, analysis, and optimization of various systems. Whether in electrical circuits, mechanical engines, or thermodynamic processes, the ability to measure and understand total mean power is essential for ensuring efficiency, safety, and sustainability. As technology continues to advance, the importance of accurately assessing total mean power will only grow, highlighting its relevance across multiple disciplines and industries.

在物理和工程领域,理解“总平均功率”的概念对分析各种系统至关重要。术语“总平均功率”指的是在特定时间段内,给定系统每单位时间内转移或转换的平均能量。这一测量在电气工程、机械系统和热力学等领域尤为重要,因为能效和性能是首要关注的问题。为了说明“总平均功率”的重要性,让我们考虑一个来自电气工程的例子。在设计电路时,工程师必须计算电路中组件消耗的“总平均功率”。这个计算使他们能够确定电源是否能够充分支持负载,并确保电路安全运行,不会过热或失效。如果“总平均功率”超过了电源的容量,就可能导致灾难性的故障,因此这一概念在实际应用中至关重要。此外,“总平均功率”也可以应用于机械系统,例如发动机或涡轮机。在这些系统中,工程师分析输出的“总平均功率”以评估其效率。通过测量在一段时间内完成的工作,他们可以优化设计,以实现更高的性能,同时最小化能量损失。例如,在汽车发动机中,理解在运行过程中产生的“总平均功率”有助于制造商创造出既强大又节能的车辆。在热力学的背景下,“总平均功率”同样重要。它使科学家和工程师能够评估热传递过程和能量转换效率。例如,在发电厂中,必须仔细监测产生的“总平均功率”,以确保满足电力需求,同时遵守环境法规。通过优化“总平均功率”,发电厂可以减少排放,提高可持续性。此外,“总平均功率”的概念超越了理论计算,具有现实世界的影响。在可再生能源系统中,例如风力涡轮机和太阳能电池板,理解生成的“总平均功率”对于评估这些技术的可行性和有效性至关重要。通过分析“总平均功率”输出,工程师可以确定最佳的安装位置,预测能源生产,并就可再生资源的投资做出明智的决策。总之,术语“总平均功率”概括了物理和工程中的一个基本概念,在各种系统的设计、分析和优化中发挥着关键作用。无论是在电路、电动机还是热力学过程中,测量和理解“总平均功率”的能力对于确保效率、安全和可持续性至关重要。随着技术的不断进步,准确评估“总平均功率”的重要性只会增加,突显出其在多个学科和行业中的相关性。