thermal shock resistance
简明释义
热冲击阻力
英英释义
The ability of a material to withstand rapid changes in temperature without experiencing failure or damage. | 材料在温度快速变化的情况下,能够承受而不发生破坏或损伤的能力。 |
例句
1.Engine components require high thermal shock resistance 耐热冲击性 to withstand sudden temperature changes.
发动机部件需要高耐热冲击性以承受突发的温度变化。
2.The laboratory tested various composites for their thermal shock resistance 耐热冲击性 before finalizing the design.
实验室测试了多种复合材料的耐热冲击性,然后才确定设计。
3.When selecting materials for cookware, look for those with good thermal shock resistance 耐热冲击性 to avoid breakage.
在选择炊具材料时,寻找那些具有良好耐热冲击性的材料,以避免破损。
4.The new ceramic material has excellent thermal shock resistance 耐热冲击性, making it ideal for high-temperature applications.
这种新型陶瓷材料具有优异的耐热冲击性,非常适合高温应用。
5.In the manufacturing of glass, thermal shock resistance 耐热冲击性 is crucial to prevent cracking during production.
在玻璃制造过程中,耐热冲击性至关重要,以防止在生产过程中出现裂纹。
作文
Thermal shock resistance is a crucial property in materials science, particularly when it comes to ceramics and glass. This term refers to the ability of a material to withstand rapid changes in temperature without cracking or breaking. In many applications, such as cookware, industrial equipment, and electronic devices, materials are often subjected to extreme thermal conditions. Understanding thermal shock resistance (热冲击抗力) is essential for ensuring the longevity and reliability of these products.To begin with, let's explore why thermal shock resistance (热冲击抗力) is important. When a material experiences a sudden temperature change, it expands or contracts rapidly. If the material cannot accommodate this change, internal stresses develop, which can lead to fractures. For example, consider a ceramic dish taken from a hot oven and placed directly into cold water. The drastic temperature difference can cause the dish to crack due to insufficient thermal shock resistance (热冲击抗力).Materials with high thermal shock resistance (热冲击抗力) are engineered to handle these stressors effectively. Common examples include borosilicate glass, which is widely used in laboratory settings and kitchenware because of its ability to endure thermal fluctuations. Similarly, certain types of ceramics, such as those used in engine components, are designed to have excellent thermal shock resistance (热冲击抗力) to prevent failure under high temperatures.The mechanisms behind thermal shock resistance (热冲击抗力) involve several factors, including thermal conductivity, coefficient of thermal expansion, and the material's inherent strength. Materials with low thermal conductivity tend to have better thermal shock resistance (热冲击抗力) because they do not allow heat to pass through them quickly, thereby reducing the chances of uneven heating. Additionally, a low coefficient of thermal expansion means that the material does not expand or contract significantly with temperature changes, further enhancing its durability.In industries where safety and performance are paramount, such as aerospace and automotive, the selection of materials with high thermal shock resistance (热冲击抗力) is critical. For instance, turbine blades in jet engines must withstand extreme temperatures while maintaining structural integrity. Engineers often conduct rigorous testing to evaluate a material's thermal shock resistance (热冲击抗力) before it is approved for use in high-stakes applications.Furthermore, advancements in material science continue to improve thermal shock resistance (热冲击抗力). Research into composite materials and innovative manufacturing techniques has led to the development of new substances that can endure even more severe thermal conditions. This progress is vital as we seek to create more efficient and durable products across various sectors.In conclusion, thermal shock resistance (热冲击抗力) plays a significant role in determining the suitability of materials for specific applications. By understanding the principles behind this property, engineers and manufacturers can select and design materials that will perform reliably under varying thermal conditions. As technology advances, the importance of thermal shock resistance (热冲击抗力) will only grow, making it a fundamental consideration in material selection and engineering design.
热冲击抗力是材料科学中一个至关重要的性质,特别是在陶瓷和玻璃领域。这个术语指的是材料在温度快速变化时抵御开裂或破损的能力。在许多应用中,例如炊具、工业设备和电子设备,材料常常受到极端热条件的影响。理解热冲击抗力(thermal shock resistance)对于确保这些产品的耐用性和可靠性至关重要。首先,让我们探讨一下为什么热冲击抗力(thermal shock resistance)如此重要。当材料经历突然的温度变化时,它会迅速膨胀或收缩。如果材料无法适应这种变化,内部应力就会产生,从而导致裂纹。例如,考虑将一个陶瓷盘从热烤箱中取出,然后直接放入冷水中。剧烈的温差可能导致盘子因缺乏足够的热冲击抗力(thermal shock resistance)而开裂。具有高热冲击抗力(thermal shock resistance)的材料经过工程设计,能够有效应对这些应力源。常见的例子包括硼硅酸盐玻璃,它因能够承受热波动而广泛用于实验室和厨房器具。同样,某些类型的陶瓷,如用于发动机部件的陶瓷,设计上具有优良的热冲击抗力(thermal shock resistance),以防止在高温下失效。热冲击抗力(thermal shock resistance)背后的机制涉及多个因素,包括热导率、热膨胀系数和材料的固有强度。热导率低的材料通常具有更好的热冲击抗力(thermal shock resistance),因为它们不会允许热量快速通过,从而减少不均匀加热的机会。此外,低热膨胀系数意味着材料在温度变化时不会显著膨胀或收缩,进一步增强其耐用性。在航空航天和汽车等安全和性能至关重要的行业中,选择具有高热冲击抗力(thermal shock resistance)的材料至关重要。例如,喷气发动机中的涡轮叶片必须承受极端温度,同时保持结构完整性。工程师通常进行严格测试,以评估材料的热冲击抗力(thermal shock resistance),以便在高风险应用中获得批准。此外,材料科学的进步不断提高热冲击抗力(thermal shock resistance)。对复合材料和创新制造技术的研究导致了新材料的发展,这些材料能够承受更为严苛的热条件。这一进展至关重要,因为我们寻求在各个领域创造更高效、更耐用的产品。总之,热冲击抗力(thermal shock resistance)在决定材料在特定应用中的适用性方面发挥着重要作用。通过理解这一性质背后的原理,工程师和制造商可以选择和设计在不同热条件下表现可靠的材料。随着技术的进步,热冲击抗力(thermal shock resistance)的重要性只会增加,使其成为材料选择和工程设计中的基本考虑因素。
相关单词