thermal creep

简明释义

热蠕变

英英释义

Thermal creep refers to the gradual deformation of materials under steady-state temperature conditions, often caused by the combined effects of temperature and stress over time.

热爬行是指在稳态温度条件下,材料在持续的温度和应力作用下逐渐变形的现象。

例句

1.The phenomenon of thermal creep 热蠕变 is particularly significant in long-term structural applications.

在长期结构应用中,热蠕变 thermal creep现象尤其显著。

2.In high-temperature applications, thermal creep 热蠕变 can lead to unexpected deformations in materials.

在高温应用中,热蠕变 thermal creep可能导致材料出现意外变形。

3.Researchers are studying the effects of thermal creep 热蠕变 on metal alloys used in aerospace.

研究人员正在研究热蠕变 thermal creep对航空航天中使用的金属合金的影响。

4.The engineers discussed how thermal creep 热蠕变 could affect the lifespan of the turbine blades.

工程师们讨论了如何热蠕变 thermal creep可能影响涡轮叶片的使用寿命。

5.To mitigate thermal creep 热蠕变, engineers often select materials with higher melting points.

为了减轻热蠕变 thermal creep,工程师们通常选择熔点更高的材料。

作文

Thermal creep is a phenomenon that occurs in materials subjected to high temperatures over extended periods. This effect can be particularly significant in metals and polymers, which tend to deform gradually when exposed to elevated thermal conditions. Understanding thermal creep (热蠕变) is crucial for engineers and scientists, especially when designing components that will operate in environments where heat is a constant factor.The concept of thermal creep (热蠕变) arises from the atomic structure of materials. At higher temperatures, the atoms in a material gain energy and begin to vibrate more vigorously. This increased activity can lead to the movement of dislocations within the material's crystalline structure, resulting in a slow but steady deformation. For example, when metal parts are used in engines or turbines, they are often exposed to extreme temperatures. Over time, these components may experience thermal creep (热蠕变), which can compromise their structural integrity and performance.One of the most common applications where thermal creep (热蠕变) is a concern is in aerospace engineering. Aircraft components, such as turbine blades, must withstand high temperatures while maintaining their shape and strength. Engineers must account for thermal creep (热蠕变) when selecting materials and designing components to ensure safety and reliability. If not properly addressed, thermal creep (热蠕变) can lead to catastrophic failures, making it imperative to understand this phenomenon thoroughly.In addition to aerospace, thermal creep (热蠕变) also poses challenges in power generation. Nuclear reactors, for instance, operate at high temperatures and pressures, making them susceptible to thermal creep (热蠕变). Components such as pipes and containment vessels must be designed to resist deformation due to prolonged exposure to heat. Engineers conduct extensive testing and simulations to predict how materials will behave under these conditions, ensuring that they can withstand the effects of thermal creep (热蠕变) over time.Furthermore, thermal creep (热蠕变) is not limited to metals. Polymers, which are widely used in various applications, can also experience this phenomenon. When polymers are heated, they may soften and become more pliable, leading to deformation. For instance, plastic components in automotive parts can undergo thermal creep (热蠕变) if exposed to high temperatures for extended periods. This can affect the fit and functionality of these parts, highlighting the importance of understanding thermal creep (热蠕变) in polymer science as well.To mitigate the effects of thermal creep (热蠕变), researchers are continually exploring new materials and treatments. High-performance alloys and advanced composites are being developed to enhance resistance to thermal creep (热蠕变). Additionally, surface treatments and coatings can improve the durability of components exposed to high temperatures. By investing in research and development, industries can better manage the challenges posed by thermal creep (热蠕变) and ensure the longevity of their products.In conclusion, thermal creep (热蠕变) is a critical factor in material science and engineering that requires careful consideration in the design and application of components subjected to high temperatures. Whether in aerospace, power generation, or everyday products, understanding the mechanisms and implications of thermal creep (热蠕变) is essential for creating safe and reliable technologies. As we continue to advance in material science, addressing thermal creep (热蠕变) will remain a priority to ensure the performance and safety of various applications.

热蠕变是指材料在长时间高温下受到影响而发生的现象。这种效应在金属和聚合物中尤其显著,当暴露于高温条件时,它们往往会逐渐变形。理解热蠕变对于工程师和科学家来说至关重要,特别是在设计将要在热量是常数因素的环境中运行的组件时。热蠕变的概念源于材料的原子结构。在较高温度下,材料中的原子获得能量并开始更剧烈地振动。这种活动的增加可能导致材料晶体结构中位错的移动,从而导致缓慢但持续的变形。例如,当金属部件用于发动机或涡轮机时,它们通常会暴露于极端温度下。随着时间的推移,这些组件可能会经历热蠕变,这可能会损害其结构完整性和性能。热蠕变常见的应用之一是航空航天工程。飞机组件,如涡轮叶片,必须承受高温,同时保持其形状和强度。工程师在选择材料和设计组件时必须考虑热蠕变,以确保安全和可靠。如果没有适当处理,热蠕变可能导致灾难性的故障,因此彻底理解这一现象是必要的。除了航空航天,热蠕变在发电中也构成挑战。例如,核反应堆在高温和高压下运行,使其容易受到热蠕变的影响。管道和容器等组件必须设计为抵抗由于长期暴露于热量而引起的变形。工程师进行广泛的测试和模拟,以预测材料在这些条件下的行为,确保它们能够承受热蠕变的影响。此外,热蠕变不仅限于金属。聚合物在各种应用中被广泛使用,也可能经历这种现象。当聚合物加热时,它们可能会软化并变得更加柔韧,导致变形。例如,汽车部件中的塑料组件如果长时间暴露于高温下,可能会经历热蠕变。这会影响这些部件的贴合和功能,突显了在聚合物科学中理解热蠕变的重要性。为了减轻热蠕变的影响,研究人员不断探索新材料和处理方法。高性能合金和先进复合材料正在开发中,以增强对热蠕变的抵抗力。此外,表面处理和涂层可以提高暴露于高温的组件的耐用性。通过投资于研发,各行业可以更好地管理热蠕变带来的挑战,确保产品的长期使用。总之,热蠕变是材料科学和工程中的一个关键因素,需要在设计和应用受到高温影响的组件时仔细考虑。无论是在航空航天、发电还是日常产品中,理解热蠕变的机制及其影响对于创建安全可靠的技术至关重要。随着我们在材料科学的不断进步,解决热蠕变问题将继续成为优先事项,以确保各种应用的性能和安全性。

相关单词

thermal

thermal详解:怎么读、什么意思、用法

creep

creep详解:怎么读、什么意思、用法