thermal creep
简明释义
热力蠕变
英英释义
例句
1.Understanding thermal creep 热蠕变 is crucial for designing components that operate at elevated temperatures.
理解 热蠕变 thermal creep 对于设计在高温下工作的部件至关重要。
2.Researchers found that the thermal creep 热蠕变 in polymers can significantly alter their mechanical properties over time.
研究人员发现,聚合物中的 热蠕变 thermal creep 会随着时间显著改变其机械性能。
3.In high-temperature applications, engineers must account for thermal creep 热蠕变 when selecting materials.
在高温应用中,工程师在选择材料时必须考虑 热蠕变 thermal creep。
4.The engineers conducted experiments to measure the effects of thermal creep 热蠕变 on the material's strength at high temperatures.
工程师们进行了实验,以测量在高温下材料强度的 热蠕变 thermal creep 影响。
5.The turbine blades experienced thermal creep 热蠕变 due to prolonged exposure to extreme heat.
由于长时间暴露在极端热量下,涡轮叶片经历了 热蠕变 thermal creep。
作文
Thermal creep is a phenomenon that occurs in materials subjected to high temperatures and mechanical stress. This process can significantly affect the performance and longevity of components used in various engineering applications, particularly in industries such as aerospace, automotive, and power generation. To better understand thermal creep, it is essential to explore its causes, effects, and implications for material selection and design.The primary cause of thermal creep is the movement of atoms or molecules within a material when it is exposed to elevated temperatures. At higher temperatures, the atomic vibrations increase, which can lead to a gradual deformation of the material under constant load. This behavior is particularly evident in crystalline materials, where the dislocation motion plays a crucial role in the creep process. As the temperature rises, the resistance to dislocation movement decreases, allowing for easier deformation over time.One of the most critical effects of thermal creep is the potential for failure in structural components. For instance, turbine blades in jet engines are often subjected to extreme temperatures and stresses. If these components experience significant thermal creep, they may deform beyond acceptable limits, leading to catastrophic failures. In addition to immediate structural concerns, thermal creep can also result in long-term issues, such as fatigue and reduced efficiency in machinery.To mitigate the risks associated with thermal creep, engineers must carefully select materials that exhibit superior creep resistance. Alloys with high melting points and strong bonding characteristics are often favored for high-temperature applications. For example, nickel-based superalloys are commonly used in turbine applications due to their excellent creep resistance and mechanical properties at elevated temperatures.Moreover, understanding thermal creep is vital for predicting the lifespan of components and planning maintenance schedules. Engineers utilize mathematical models to estimate the creep rate of materials under specific conditions, allowing them to make informed decisions regarding design and operational parameters. By incorporating knowledge of thermal creep into the design phase, engineers can optimize component geometries and minimize stress concentrations that may exacerbate creep behavior.In conclusion, thermal creep is a critical consideration in the field of materials science and engineering. Its implications extend far beyond mere material selection; they influence the safety, reliability, and efficiency of many systems we rely on daily. As technology advances and components operate at increasingly higher temperatures, understanding and managing thermal creep will remain an essential aspect of engineering practice. The ability to predict and counteract the effects of thermal creep will ensure that our engineering solutions continue to perform effectively and safely in demanding environments.
热蠕变是指材料在高温和机械应力作用下发生的一种现象。这一过程可能会显著影响各种工程应用中组件的性能和寿命,特别是在航空航天、汽车和发电等行业。要更好地理解热蠕变,必须探讨其原因、影响以及对材料选择和设计的影响。热蠕变的主要原因是材料在暴露于高温时,原子或分子的运动。当温度升高时,原子振动增加,这可能导致材料在持续负载下逐渐变形。这种行为在晶体材料中尤为明显,其中位错运动在蠕变过程中起着至关重要的作用。随着温度的升高,位错运动的阻力减小,从而使得随着时间的推移,变形变得更加容易。热蠕变最关键的影响之一是结构组件失效的潜在风险。例如,喷气发动机中的涡轮叶片通常承受极端的温度和应力。如果这些组件经历显著的热蠕变,它们可能会变形超过可接受的限制,导致灾难性故障。除了直接的结构问题外,热蠕变还可能导致长期问题,例如疲劳和机械效率降低。为了减轻与热蠕变相关的风险,工程师必须仔细选择表现出优越蠕变抗性的材料。在高温应用中,具有高熔点和强结合特性的合金通常受到青睐。例如,镍基超合金因其在高温下优异的蠕变抗性和机械性能而广泛用于涡轮应用。此外,了解热蠕变对于预测组件的使用寿命和规划维护计划至关重要。工程师利用数学模型来估算在特定条件下材料的蠕变速率,使他们能够就设计和操作参数做出明智的决策。通过将热蠕变的知识纳入设计阶段,工程师可以优化组件几何形状,最小化可能加剧蠕变行为的应力集中。总之,热蠕变是材料科学和工程领域的重要考虑因素。其影响不仅仅限于材料选择;它们还影响我们日常依赖的许多系统的安全性、可靠性和效率。随着技术的进步和组件在越来越高的温度下运行,理解和管理热蠕变将继续成为工程实践的一个重要方面。预测和对抗热蠕变影响的能力将确保我们的工程解决方案在苛刻环境中继续有效和安全地运行。
相关单词