standard model
简明释义
标准模型
英英释义
例句
1.The physicists discussed the implications of the standard model 标准模型 in explaining particle interactions.
物理学家们讨论了标准模型 standard model 在解释粒子相互作用中的意义。
2.The discovery of the Higgs boson was a significant milestone for the standard model 标准模型.
希格斯玻色子的发现是对标准模型 standard model 的一个重要里程碑。
3.Researchers are looking for evidence that could challenge the standard model 标准模型 of particle physics.
研究人员正在寻找可能挑战粒子物理学的标准模型 standard model 的证据。
4.The standard model 标准模型 is essential for understanding modern physics.
理解现代物理学,标准模型 standard model 是至关重要的。
5.In our course, we will cover the standard model 标准模型 of cosmology in detail.
在我们的课程中,我们将详细讲解宇宙学的标准模型 standard model。
作文
The concept of the standard model is fundamental in the field of particle physics. It describes the fundamental particles and their interactions, providing a comprehensive framework that has been validated through numerous experiments. The standard model encompasses three of the four known fundamental forces in the universe: electromagnetic, weak, and strong nuclear forces, while gravity remains outside its scope. This model has been instrumental in enhancing our understanding of the universe at the smallest scales.One of the most significant achievements of the standard model was the prediction and subsequent discovery of the Higgs boson in 2012 at CERN. The Higgs boson is crucial because it explains how particles acquire mass through the Higgs field, a concept that was initially difficult to grasp but is now pivotal in modern physics. The successful detection of this particle confirmed the validity of the standard model and highlighted the importance of theoretical predictions in guiding experimental research.However, despite its successes, the standard model is not without limitations. For instance, it does not account for dark matter and dark energy, which together make up about 95% of the universe's total mass-energy content. Additionally, the standard model cannot explain the observed asymmetry between matter and antimatter in the universe. These shortcomings have led physicists to explore theories beyond the standard model, such as supersymmetry and string theory, which aim to provide a more complete understanding of the universe.Moreover, the standard model relies heavily on empirical data, and as our experimental techniques improve, we continue to refine our understanding of particle interactions. The ongoing research in high-energy physics, such as experiments conducted at the Large Hadron Collider, aims to probe the limits of the standard model and uncover new phenomena. This pursuit not only seeks to validate existing theories but also to challenge them, pushing the boundaries of human knowledge.In conclusion, the standard model plays a critical role in our understanding of the fundamental constituents of matter and their interactions. While it has achieved remarkable success in explaining a wide range of phenomena, it also presents challenges that inspire ongoing research and exploration. The journey towards a deeper understanding of the universe continues, driven by the questions that arise from the limitations of the standard model. As we advance in technology and theoretical frameworks, the quest to uncover the mysteries of the cosmos remains one of humanity's most profound endeavors.
“标准模型”这一概念在粒子物理学领域是基础性的。它描述了基本粒子及其相互作用,提供了一个经过众多实验验证的全面框架。“标准模型”涵盖了宇宙中已知的四种基本力中的三种:电磁力、弱核力和强核力,而引力则不在其范围之内。这个模型在增强我们对宇宙微观尺度的理解方面发挥了重要作用。“标准模型”最显著的成就是在2012年于欧洲核子研究中心(CERN)预测并随后发现希格斯玻色子。希格斯玻色子至关重要,因为它解释了粒子如何通过希格斯场获得质量,这一概念起初难以理解,但现在在现代物理学中至关重要。这一粒子的成功探测证实了“标准模型”的有效性,并强调了理论预测在指导实验研究中的重要性。然而,尽管取得了成功,“标准模型”并非没有局限性。例如,它无法解释暗物质和暗能量,这两者共同占据了宇宙总质量-能量内容的约95%。此外,“标准模型”也无法解释宇宙中观察到的物质与反物质的不对称性。这些缺点促使物理学家探索超越“标准模型”的理论,如超对称和弦理论,旨在提供更完整的宇宙理解。此外,“标准模型”在很大程度上依赖于实证数据,随着我们的实验技术的提高,我们不断完善对粒子相互作用的理解。在高能物理学领域的持续研究,例如在大型强子对撞机进行的实验,旨在探测“标准模型”的极限,并揭示新的现象。这一追求不仅寻求验证现有理论,也挑战它们,推动人类知识的边界。总之,“标准模型”在我们理解物质的基本成分及其相互作用中发挥着关键作用。尽管它在解释广泛现象方面取得了显著成功,但它也提出了激励持续研究和探索的挑战。迈向更深入理解宇宙的旅程仍在继续,受到“标准模型”局限性所引发的问题的驱动。随着技术和理论框架的进步,揭示宇宙奥秘的追求依然是人类最深刻的努力之一。