sinusoidal law

简明释义

正弦定律

英英释义

A mathematical relationship that describes a sinusoidal function, often used in physics and engineering to model periodic phenomena such as waves, oscillations, and alternating current.

描述正弦函数的数学关系,常用于物理和工程中以建模周期性现象,如波、振荡和交流电。

例句

1.Engineers often use the sinusoidal law 正弦规律 to model the motion of pendulums and other oscillating systems.

工程师们常常使用sinusoidal law 正弦规律来模拟摆和其他振荡系统的运动。

2.In electrical engineering, the behavior of alternating current can be described by the sinusoidal law 正弦规律, which states that the current varies in a sinusoidal manner over time.

在电气工程中,交流电的行为可以通过sinusoidal law 正弦规律来描述,该规律表明电流随时间以正弦方式变化。

3.In physics, the sinusoidal law 正弦规律 is used to describe the relationship between force and displacement in harmonic motion.

在物理学中,sinusoidal law 正弦规律用于描述谐波运动中力与位移之间的关系。

4.The sinusoidal law 正弦规律 is essential for understanding waveforms in signal processing.

在信号处理中,理解波形时,sinusoidal law 正弦规律是至关重要的。

5.The sinusoidal law 正弦规律 helps predict the behavior of sound waves in acoustics.

在声学中,sinusoidal law 正弦规律有助于预测声波的行为。

作文

The concept of sinusoidal law is fundamental in various fields, particularly in physics and engineering. This law describes the behavior of sinusoidal waves, which are smooth, periodic oscillations that can be seen in many natural phenomena. The sinusoidal law essentially states that the displacement of a wave can be expressed as a sine or cosine function of time, allowing for an understanding of how waves propagate and interact with different mediums.To grasp the significance of the sinusoidal law, one must first understand what sinusoidal waves are. These waves are characterized by their amplitude, frequency, and phase. The amplitude refers to the maximum displacement from the equilibrium position, while the frequency indicates how many cycles occur in a unit of time. The phase represents the initial angle of the wave at time zero. Together, these properties define the shape and behavior of the wave, making the sinusoidal law a crucial tool in predicting wave behavior.In electrical engineering, for instance, alternating current (AC) is described by the sinusoidal law. AC voltage and current vary sinusoidally over time, which means they can be modeled using sine functions. This understanding allows engineers to design circuits that efficiently utilize AC power. By applying the sinusoidal law, they can calculate the power consumption and determine the optimal configurations for electrical systems.Moreover, the sinusoidal law is not limited to electrical applications; it also plays a significant role in mechanical systems. For example, when analyzing the motion of pendulums or springs, the principles of sinusoidal motion can be observed. In these cases, the restoring force acting on the object is proportional to its displacement, leading to simple harmonic motion, which can be described using the sinusoidal law.In acoustics, sound waves also exhibit sinusoidal characteristics. The sinusoidal law helps us understand how sound propagates through different mediums, such as air, water, or solids. The frequency of the sound wave determines the pitch we perceive, while the amplitude affects the loudness. By applying the sinusoidal law, sound engineers can manipulate audio signals to achieve desired effects in music production and sound design.Furthermore, the sinusoidal law has applications in signal processing and telecommunications. Digital signals often need to be transmitted over long distances without degradation. By encoding information in a sinusoidal format, we can effectively modulate signals for transmission, ensuring clarity and fidelity upon reception. This application of the sinusoidal law is vital in modern communication systems, including radio, television, and internet data transfer.In summary, the sinusoidal law is a powerful principle that underlies many aspects of science and technology. Its ability to describe periodic phenomena makes it invaluable in fields such as physics, engineering, acoustics, and telecommunications. By understanding the sinusoidal law, we gain insights into the behavior of waves and oscillations, allowing us to harness their properties for practical applications. As we continue to explore the complexities of wave behavior, the sinusoidal law will undoubtedly remain a cornerstone of our understanding of the natural world.

“正弦定律”这一概念在多个领域中都是基础,尤其是在物理学和工程学中。该定律描述了正弦波的行为,这是一种平滑的、周期性的振荡,可以在许多自然现象中看到。“正弦定律”基本上表明,波的位移可以用时间的正弦或余弦函数表示,从而使我们能够理解波如何传播以及与不同介质的相互作用。要理解“正弦定律”的重要性,首先必须了解什么是正弦波。这些波的特征包括振幅、频率和相位。振幅指的是从平衡位置的最大位移,而频率则表示单位时间内发生的周期数。相位表示时间为零时波的初始角度。这些属性共同定义了波的形状和行为,使得“正弦定律”成为预测波行为的重要工具。例如,在电气工程中,交流电(AC)就是用“正弦定律”来描述的。交流电压和电流随时间呈正弦波动,这意味着它们可以用正弦函数建模。这种理解使工程师能够设计有效利用交流电的电路。通过应用“正弦定律”,他们可以计算功耗,并确定电气系统的最佳配置。此外,“正弦定律”并不限于电气应用;它在机械系统中也发挥着重要作用。例如,在分析摆或弹簧的运动时,可以观察到正弦运动的原理。在这些情况下,作用于物体的恢复力与其位移成正比,从而导致简单谐振动,可以用“正弦定律”来描述。在声学中,声波也表现出正弦特性。“正弦定律”帮助我们理解声音如何通过不同介质传播,例如空气、水或固体。声波的频率决定了我们感知的音调,而振幅则影响响度。通过应用“正弦定律”,音响工程师可以操纵音频信号,以实现音乐制作和声音设计中的所需效果。此外,“正弦定律”在信号处理和电信中也有应用。数字信号通常需要在长距离上传输而不发生衰减。通过将信息编码为正弦格式,我们可以有效地调制信号以进行传输,确保接收时的清晰度和保真度。这一“正弦定律”的应用在现代通信系统中至关重要,包括无线电、电视和互联网数据传输。总之,“正弦定律”是一个强大的原则,支撑着科学和技术的许多方面。它描述周期现象的能力使其在物理学、工程学、声学和电信等领域不可或缺。通过理解“正弦定律”,我们获得了对波和振荡行为的深入见解,使我们能够利用其特性进行实际应用。随着我们继续探索波行为的复杂性,“正弦定律”无疑将继续成为我们理解自然世界的基石。

相关单词

sinusoidal

sinusoidal详解:怎么读、什么意思、用法