incondensable

简明释义

[ˌɪnkənˈdensəbəl][ˌɪnkənˈdensəbl]

adj. 不能凝缩的,无凝缩性的

英英释义

Not capable of being condensed; refers to substances that cannot be converted from a gas to a liquid or solid state under pressure.

不可凝缩的;指的是在压力下无法从气体转变为液体或固体状态的物质。

单词用法

incondensable gas

不可凝结气体

incondensable vapor

不可凝结蒸汽

mix of condensable and incondensable components

可凝结和不可凝结成分的混合物

properties of incondensable fluids

不可凝结流体的性质

同义词

non-condensable

不可凝结的

Non-condensable gases can remain in a gaseous state even under high pressure.

不可凝结气体在高压下仍能保持气态。

vaporous

蒸汽状的

Vaporous substances are often used in various industrial applications.

蒸汽状物质常用于各种工业应用。

反义词

condensable

可凝结的

Water vapor is a condensable gas.

水蒸气是一种可凝结的气体。

compressible

可压缩的

Air is a compressible fluid.

空气是一种可压缩的流体。

例句

1.Most of the detected incondensable gases were favored by the moisture content, while tar components were reduced by the moisture content.

不凝性小分子气体的析出量随稻杆原料水分含量增大而增大,主要焦油组分析出量则随之减小。

2.Most of the detected incondensable gases were favored by the moisture content, while tar components were reduced by the moisture content.

不凝性小分子气体的析出量随稻杆原料水分含量增大而增大,主要焦油组分析出量则随之减小。

3.To ensure optimal performance, it is crucial to identify and remove any incondensable 不可凝结的 gases from the system.

为了确保最佳性能,识别并去除系统中的任何不可凝结的气体至关重要。

4.The gas mixture contained several components, one of which was identified as incondensable 不可凝结的 under standard conditions.

气体混合物包含几个成分,其中一个被确定为在标准条件下是不可凝结的

5.During the experiment, we observed that the incondensable 不可凝结的 vapor remained in the system despite cooling.

在实验过程中,我们观察到尽管冷却,不可凝结的蒸汽仍然留在系统中。

6.In the refrigeration cycle, the incondensable 不可凝结的 gases can reduce efficiency if not removed properly.

在制冷循环中,如果不正确去除,不可凝结的气体可能会降低效率。

7.The presence of incondensable 不可凝结的 substances in the pipeline can lead to pressure drops.

管道中存在不可凝结的物质可能导致压力下降。

作文

In the realm of physics and chemistry, the term incondensable refers to substances that cannot be converted from a gaseous state to a liquid state through the process of condensation. This characteristic is particularly significant when discussing gases that are often found in various industrial processes. Understanding the properties of incondensable gases is crucial for engineers and scientists who design systems that involve gas mixtures, such as combustion engines or chemical reactors. For instance, when burning fossil fuels, the exhaust gases produced contain both condensable and incondensable components. The condensable components can form liquids, which may lead to issues like corrosion or pollution if not properly managed.One of the most common examples of incondensable gases is nitrogen. Nitrogen makes up about 78% of the Earth's atmosphere and remains in a gaseous state under normal conditions. Its incondensable nature allows it to serve as a non-reactive filler in various applications, such as in food packaging, where it helps to preserve freshness by displacing oxygen. This property is also utilized in laboratories where an inert atmosphere is required for certain experiments.The significance of incondensable gases extends beyond industrial applications. In environmental science, understanding the behavior of incondensable gases is essential for assessing air quality and climate change. For example, while carbon dioxide can be condensed into a liquid under high pressure, gases like methane and nitrous oxide are considered incondensable under standard atmospheric conditions. These gases contribute to the greenhouse effect, and their management is vital for mitigating climate change impacts.Moreover, in the context of thermodynamics, incondensable gases play a role in the efficiency of heat exchangers and other thermal systems. When designing these systems, engineers must account for the presence of incondensable gases, as they can affect the overall heat transfer efficiency. If a gas mixture contains a significant amount of incondensable components, it may lead to less efficient heat exchange, resulting in increased energy consumption and operational costs.To summarize, the concept of incondensable gases is multifaceted and has important implications across various fields. From industrial processes to environmental impact assessments, understanding the behavior and characteristics of incondensable substances is essential for developing effective solutions and technologies. As we continue to face challenges related to energy consumption and environmental sustainability, the knowledge of incondensable gases will undoubtedly play a crucial role in shaping future innovations and practices. It is imperative that students and professionals alike grasp the significance of this term to enhance their understanding of both natural phenomena and engineered systems.

在物理和化学领域,术语incondensable指的是那些无法通过冷凝过程从气态转变为液态的物质。这一特性在讨论各种工业过程中的气体时尤为重要。理解incondensable气体的特性对设计涉及气体混合物的系统的工程师和科学家至关重要,例如燃烧发动机或化学反应器。例如,在燃烧化石燃料时,产生的废气中包含可冷凝和incondensable成分。可冷凝成分可以形成液体,如果不加以管理,可能会导致腐蚀或污染等问题。最常见的incondensable气体之一是氮气。氮气占地球大气的约78%,在正常条件下保持气态。其incondensable特性使其成为各种应用中的惰性填充物,例如在食品包装中,通过置换氧气来帮助保持新鲜度。这一特性在实验室中也得到了应用,在某些实验中需要惰性气氛。incondensable气体的重要性不仅限于工业应用。在环境科学中,理解incondensable气体的行为对于评估空气质量和气候变化至关重要。例如,二氧化碳可以在高压下冷凝为液体,而甲烷和一氧化二氮等气体在标准大气条件下被认为是incondensable的。这些气体对温室效应有贡献,其管理对于减缓气候变化影响至关重要。此外,在热力学的背景下,incondensable气体在热交换器和其他热系统的效率中也起着重要作用。在设计这些系统时,工程师必须考虑到incondensable气体的存在,因为它们会影响整体的热传递效率。如果气体混合物中含有大量的incondensable成分,可能会导致热交换效率降低,从而增加能源消耗和运营成本。总之,incondensable气体的概念是多方面的,并在各个领域具有重要意义。从工业过程到环境影响评估,了解incondensable物质的行为和特性对于开发有效的解决方案和技术至关重要。随着我们继续面临与能源消耗和环境可持续性相关的挑战,了解incondensable气体无疑将在塑造未来的创新和实践中发挥重要作用。学生和专业人士必须掌握这一术语的重要性,以增强他们对自然现象和工程系统的理解。