remanent magnetizability
简明释义
剩余磁化强度
英英释义
Remanent magnetizability refers to the ability of a material to retain magnetization after an external magnetic field has been removed. | 剩余磁化能力是指材料在外部磁场去除后保持磁化的能力。 |
例句
1.Engineers must consider the remanent magnetizability when designing magnetic storage devices.
工程师在设计磁存储设备时必须考虑剩余磁化能力。
2.The study focused on the remanent magnetizability of various rock samples to understand their geological history.
这项研究集中于各种岩石样本的剩余磁化能力,以了解它们的地质历史。
3.Researchers are investigating how temperature changes impact the remanent magnetizability of certain alloys.
研究人员正在调查温度变化如何影响某些合金的剩余磁化能力。
4.The remanent magnetizability of the material affects its performance in magnetic field applications.
材料的剩余磁化能力影响其在磁场应用中的性能。
5.In geology, the remanent magnetizability can reveal past magnetic field reversals.
在地质学中,剩余磁化能力可以揭示过去磁场的反转。
作文
In the realm of physics and materials science, understanding the properties of materials is crucial for various applications. One such property that has garnered significant attention is remanent magnetizability. This term refers to the ability of a material to retain magnetization after an external magnetic field is removed. The concept of remanent magnetizability is particularly important in the field of magnetism, as it directly influences the performance of magnetic materials in various applications, including data storage, electric motors, and magnetic sensors.To comprehend remanent magnetizability, one must first grasp the basics of magnetism. When a ferromagnetic material, such as iron, is exposed to a magnetic field, the magnetic domains within the material align with the field. This alignment causes the material to become magnetized. However, once the external magnetic field is removed, some of these domains may remain aligned, leading to a residual magnetization. This phenomenon is what we refer to as remanent magnetizability.The degree of remanent magnetizability varies among different materials. For instance, permanent magnets are designed to have high remanent magnetizability, allowing them to maintain their magnetization over long periods. In contrast, soft magnetic materials, which are used in applications where rapid magnetization and demagnetization are required, typically exhibit low remanent magnetizability. Understanding these differences is essential for selecting the appropriate materials for specific applications.In practical terms, the significance of remanent magnetizability can be observed in everyday technologies. For example, hard disk drives rely on materials with high remanent magnetizability to store data. The magnetic bits that represent the data must remain stable even when the power is turned off. Similarly, electric motors depend on materials that can quickly switch between magnetized and demagnetized states, necessitating a careful balance of remanent magnetizability to ensure efficiency and performance.Moreover, advancements in material science have led to the development of new alloys and compounds that enhance remanent magnetizability. Researchers are continually exploring ways to improve the magnetic properties of materials to meet the demands of modern technology. For instance, the discovery of rare-earth magnets has revolutionized many industries by providing materials with exceptionally high remanent magnetizability, enabling smaller and more powerful devices.In conclusion, remanent magnetizability is a fundamental property of magnetic materials that plays a pivotal role in numerous technological applications. Its influence spans across various fields, from data storage to electric motors, making it an essential topic of study in material science. As technology continues to evolve, the importance of understanding and optimizing remanent magnetizability will only grow, paving the way for innovations that enhance our daily lives. By delving deeper into this concept, scientists and engineers can unlock new potentials in the design and application of magnetic materials, ultimately shaping the future of technology.The Chinese translation of remanent magnetizability is 剩余磁化能力, which encapsulates the essence of this property. It emphasizes the ability of materials to retain their magnetic characteristics even after the removal of an external magnetic influence, highlighting its significance in both theoretical and practical contexts.
在物理学和材料科学领域,理解材料的性质对各种应用至关重要。其中一个引起广泛关注的特性是剩余磁化能力。这个术语指的是材料在外部磁场移除后保持磁化的能力。剩余磁化能力的概念在磁学领域尤其重要,因为它直接影响着各种应用中磁性材料的性能,包括数据存储、电动机和磁传感器。要理解剩余磁化能力,首先必须掌握磁学的基本知识。当铁等铁磁材料暴露于磁场时,材料内部的磁畴会与磁场对齐。这种对齐使得材料被磁化。然而,一旦外部磁场被移除,这些畴中的一些可能仍然保持对齐,从而导致残余磁化。我们所称的现象就是剩余磁化能力。剩余磁化能力的程度因不同材料而异。例如,永久磁铁被设计为具有高剩余磁化能力,使其能够在长时间内保持磁化。相比之下,用于需要快速磁化和去磁的应用的软磁材料通常表现出低剩余磁化能力。理解这些差异对于选择适合特定应用的材料至关重要。在实际应用中,剩余磁化能力的重要性可以在日常技术中观察到。例如,硬盘驱动器依赖于具有高剩余磁化能力的材料来存储数据。表示数据的磁位必须在电源关闭时保持稳定。同样,电动机依赖于能够快速在磁化和去磁状态之间切换的材料,因此需要仔细平衡剩余磁化能力以确保效率和性能。此外,材料科学的进步促使新合金和化合物的开发,以增强剩余磁化能力。研究人员不断探索改善材料磁性的方法,以满足现代技术的需求。例如,稀土磁铁的发现通过提供具有极高剩余磁化能力的材料,彻底改变了许多行业,使设备变得更小、更强大。总之,剩余磁化能力是磁性材料的一项基本属性,在众多技术应用中发挥着核心作用。它的影响跨越多个领域,从数据存储到电动机,使其成为材料科学研究的一个重要主题。随着技术的不断发展,理解和优化剩余磁化能力的重要性只会增加,为增强我们日常生活的创新铺平道路。通过深入探讨这一概念,科学家和工程师可以解锁磁性材料设计和应用的新潜力,最终塑造技术的未来。剩余磁化能力的中文翻译是剩余磁化能力,它概括了这一特性的本质。它强调了材料在去除外部磁性影响后保持其磁性特征的能力,突出了其在理论和实际背景下的重要性。
相关单词