reciprocal piezoelectric effect

简明释义

反压电效应

英英释义

The reciprocal piezoelectric effect refers to the phenomenon where an applied mechanical stress on a piezoelectric material generates an electric charge, and conversely, an applied electric field induces mechanical deformation in the material.

互惠压电效应是指在压电材料上施加机械应力时产生电荷,而反之,施加电场会引起材料的机械变形的现象。

例句

1.The reciprocal piezoelectric effect is crucial in the design of actuators used in robotics.

在机器人设计中,压电效应的互逆性是至关重要的,影响着执行器的性能。

2.The sensor utilizes the reciprocal piezoelectric effect to convert mechanical stress into an electrical signal.

该传感器利用压电效应的互逆性将机械应力转换为电信号。

3.In ultrasound technology, the reciprocal piezoelectric effect allows for both transmission and reception of sound waves.

在超声波技术中,压电效应的互逆性使得声音波的发射和接收都成为可能。

4.By applying voltage, the device exploits the reciprocal piezoelectric effect to create precise movements.

通过施加电压,该设备利用压电效应的互逆性来产生精确的运动。

5.Researchers are exploring new materials that enhance the reciprocal piezoelectric effect for more efficient energy harvesting.

研究人员正在探索新材料,以增强压电效应的互逆性,以提高能量采集的效率。

作文

The field of materials science and engineering has seen significant advancements in recent years, particularly concerning the properties and applications of piezoelectric materials. One of the most intriguing phenomena associated with these materials is the reciprocal piezoelectric effect, which refers to the ability of certain materials to generate an electric charge in response to mechanical stress and, conversely, to deform when an electric field is applied. This dual behavior makes piezoelectric materials highly valuable in various applications, from sensors to actuators.To better understand the reciprocal piezoelectric effect, it is essential first to grasp the basic principles of piezoelectricity. Piezoelectric materials, such as quartz and certain ceramics, possess a crystalline structure that allows them to convert mechanical energy into electrical energy and vice versa. When mechanical stress is applied to these materials, the internal dipoles within the crystal lattice become polarized, leading to the generation of an electric charge on their surfaces. This phenomenon is widely utilized in pressure sensors and microphones, where the conversion of sound or pressure waves into electrical signals is required.Conversely, the reciprocal piezoelectric effect also highlights how applying an electric field can induce mechanical deformation in these materials. This property is harnessed in devices like piezoelectric actuators, which are used in precision positioning systems and robotics. By applying an electric voltage across a piezoelectric material, engineers can create controlled movements, enabling the development of advanced technologies such as micro-positioners and adaptive optics.The implications of the reciprocal piezoelectric effect extend beyond simple mechanical and electrical interactions. Researchers are exploring new composite materials that combine piezoelectric properties with other functionalities, such as energy harvesting and self-sensing capabilities. These innovations could lead to more efficient energy conversion systems, where ambient vibrations or mechanical movements are captured and transformed into usable electrical energy.Moreover, the reciprocal piezoelectric effect plays a crucial role in the development of smart materials and structures. For instance, integrating piezoelectric materials into building components can enable real-time monitoring of structural health by detecting stress and strain. This capability is particularly vital in civil engineering, where ensuring the safety and longevity of infrastructure is paramount.In conclusion, the reciprocal piezoelectric effect is a fascinating phenomenon that underscores the versatility and potential of piezoelectric materials in modern technology. By understanding and harnessing this effect, scientists and engineers can develop innovative solutions that enhance our ability to interact with the physical world. From energy harvesting systems to smart structures, the applications of the reciprocal piezoelectric effect are vast and varied, promising a future where technology and materials science work hand in hand to create more efficient and responsive systems. As research continues to evolve, we can expect even more groundbreaking discoveries in this exciting field, paving the way for advancements that could transform our daily lives.

材料科学与工程领域近年来取得了显著进展,特别是在压电材料的性质和应用方面。其中一个最引人注目的现象是互惠压电效应,指的是某些材料在受到机械应力时能够产生电荷,并且在施加电场时又能发生变形。这种双重行为使得压电材料在从传感器到执行器的各种应用中具有极高的价值。要更好地理解互惠压电效应,首先必须掌握压电效应的基本原理。压电材料,如石英和某些陶瓷,具有一种晶体结构,使它们能够将机械能转化为电能,反之亦然。当对这些材料施加机械应力时,晶格内的偶极子会极化,从而在其表面上产生电荷。这一现象广泛应用于压力传感器和麦克风中,后者需要将声音或压力波转换为电信号。相反,互惠压电效应也突显了施加电场如何在这些材料中引起机械变形。这一特性被用于压电执行器等设备中,这些设备用于精密定位系统和机器人技术。通过在压电材料上施加电压,工程师可以创建受控运动,从而推动微定位器和自适应光学等先进技术的发展。互惠压电效应的影响超出了简单的机械和电气交互。研究人员正在探索结合压电特性与其他功能的新复合材料,例如能量收集和自感知能力。这些创新可能导致更高效的能量转换系统,其中环境振动或机械运动被捕获并转化为可用的电能。此外,互惠压电效应在智能材料和结构的开发中也发挥着至关重要的作用。例如,将压电材料集成到建筑组件中可以通过检测应力和应变实现对结构健康的实时监测。这种能力在土木工程中尤为重要,因为确保基础设施的安全性和耐久性至关重要。总之,互惠压电效应是一个引人入胜的现象,它强调了压电材料在现代技术中的多样性和潜力。通过理解和利用这一效应,科学家和工程师可以开发出创新的解决方案,增强我们与物理世界互动的能力。从能量收集系统到智能结构,互惠压电效应的应用广泛而多样,承诺着一个技术与材料科学携手创造更高效、更响应的系统的未来。随着研究的不断发展,我们可以期待在这个令人兴奋的领域中出现更多突破性的发现,为改变我们的日常生活铺平道路。

相关单词

reciprocal

reciprocal详解:怎么读、什么意思、用法

piezoelectric

piezoelectric详解:怎么读、什么意思、用法