quadrature component lagging 90

简明释义

°滞后

英英释义

The quadrature component lagging 90 refers to a component of a signal that is phase-shifted by 90 degrees relative to a reference component, typically in the context of alternating current (AC) or sinusoidal signals.

相位滞后90度的正交分量是指在交流电或正弦信号的上下文中,相对于参考分量,信号的一个分量相位偏移了90度。

例句

1.In a sinusoidal waveform, the quadrature component lagging 90 degrees represents the phase shift of the current relative to the voltage.

在正弦波形中,相位滞后90度的正交分量表示电流相对于电压的相位偏移。

2.The signal processing algorithm uses the quadrature component lagging 90 to extract important features from the data.

信号处理算法使用相位滞后90度的正交分量从数据中提取重要特征。

3.When analyzing AC circuits, the quadrature component lagging 90 is crucial for understanding reactive power.

在分析交流电路时,相位滞后90度的正交分量对于理解无功功率至关重要。

4.In phasor representation, the quadrature component lagging 90 indicates the imaginary part of the complex number.

在相量表示中,相位滞后90度的正交分量表示复数的虚部。

5.The quadrature component lagging 90 helps in determining the direction of the electromagnetic wave propagation.

相位滞后90度的正交分量有助于确定电磁波传播的方向。

作文

In the field of electrical engineering and signal processing, the concept of phase relationships among different components is crucial for understanding how signals interact with one another. One such important relationship is described by the term quadrature component lagging 90. This phrase refers to a specific condition in which one signal is phase-shifted by 90 degrees relative to another signal, typically in the context of alternating current (AC) systems or sinusoidal waveforms. Understanding this phase shift is essential for engineers and technicians who work with AC circuits, as it plays a significant role in the analysis and design of various electrical systems.To grasp the significance of quadrature component lagging 90, we first need to understand what quadrature means. In mathematics and physics, two functions are said to be in quadrature when they are 90 degrees out of phase with each other. This can be visualized using the unit circle, where one function might represent the sine wave and the other the cosine wave. When the sine wave reaches its maximum value, the cosine wave is at zero, demonstrating that they are perfectly out of phase by 90 degrees. This relationship is not only theoretical; it has practical implications in many applications, including telecommunications, signal modulation, and control systems.The term quadrature component lagging 90 specifically highlights the scenario where one signal lags behind another by this critical phase difference. For instance, in an AC circuit consisting of resistors and inductors, the voltage across the inductor lags the current by 90 degrees. This lagging behavior is fundamental to the operation of inductive components, and it is vital for engineers to account for these phase differences when designing circuits to ensure proper functionality and efficiency.Moreover, the concept of quadrature component lagging 90 is instrumental in the realm of signal processing. In digital communications, for example, quadrature amplitude modulation (QAM) utilizes both the in-phase (I) and quadrature (Q) components of a signal to transmit data efficiently. The I component represents the real part of the signal, while the Q component, which is phase-shifted by 90 degrees, represents the imaginary part. By manipulating both components, QAM allows for the transmission of multiple bits per symbol, significantly increasing the data rate compared to traditional modulation schemes.In conclusion, the phrase quadrature component lagging 90 encapsulates a fundamental principle in the study of signals and systems. Whether in the context of electrical engineering or signal processing, recognizing the implications of this 90-degree phase shift is essential for designing effective circuits and communication systems. By understanding how signals interact through their phase relationships, engineers can create more reliable and efficient technologies that underpin modern electrical and communication infrastructures. As technology continues to evolve, the importance of mastering concepts like quadrature component lagging 90 will only grow, making it a key area of study for future engineers and technologists.

在电气工程和信号处理领域,信号之间的相位关系是理解信号如何相互作用的关键概念。其中一个重要的关系由术语相位滞后90度的正交分量描述。这个短语指的是在交流电(AC)系统或正弦波形的背景下,一个信号相对于另一个信号相位偏移90度的特定条件。理解这种相位偏移对于从事交流电路工作的工程师和技术人员至关重要,因为它在各种电气系统的分析和设计中扮演着重要角色。要理解相位滞后90度的正交分量的重要性,我们首先需要了解正交的含义。在数学和物理学中,当两个函数相位差为90度时,它们被称为正交。这可以通过单位圆进行可视化,其中一个函数可能表示正弦波,另一个则表示余弦波。当正弦波达到其最大值时,余弦波为零,表明它们的相位完全相差90度。这种关系不仅是理论上的;它在许多应用中具有实际意义,包括电信、信号调制和控制系统。术语相位滞后90度的正交分量特别强调了一个信号相对于另一个信号滞后这一关键相位差的情况。例如,在由电阻器和电感器组成的交流电路中,电感器两端的电压相对于电流滞后90度。这种滞后行为对电感元件的操作至关重要,工程师必须在设计电路时考虑这些相位差,以确保电路的正常功能和效率。此外,相位滞后90度的正交分量的概念在信号处理领域也非常重要。在数字通信中,例如,正交振幅调制(QAM)利用信号的同相(I)和正交(Q)分量来高效传输数据。I分量代表信号的实部,而Q分量则相位偏移90度,代表虚部。通过操纵这两个分量,QAM允许每个符号传输多个比特,相较于传统调制方案显著提高了数据传输速率。总之,短语相位滞后90度的正交分量概括了信号和系统研究中的一个基本原则。无论是在电气工程还是信号处理的背景下,认识到这一90度相位偏移的影响对于设计有效的电路和通信系统至关重要。通过理解信号通过其相位关系相互作用的方式,工程师可以创建更可靠和高效的技术,这些技术支撑着现代电气和通信基础设施。随着技术的不断发展,掌握像相位滞后90度的正交分量这样的概念的重要性只会增加,使其成为未来工程师和技术专家学习的关键领域。

相关单词

quadrature

quadrature详解:怎么读、什么意思、用法

lagging

lagging详解:怎么读、什么意思、用法