propeller flow field

简明释义

螺旋桨流场

英英释义

The propeller flow field refers to the spatial distribution and characteristics of the airflow generated by a rotating propeller, including velocity, pressure, and turbulence around the propeller blades.

螺旋桨流场是指由旋转的螺旋桨产生的气流在空间中的分布和特性,包括螺旋桨叶片周围的速度、压力和湍流。

例句

1.Understanding the propeller flow field 螺旋桨流场 is crucial for improving fuel efficiency.

理解螺旋桨流场对于提高燃油效率至关重要.

2.Engineers used simulations to analyze the propeller flow field 螺旋桨流场 around the boat.

工程师们使用模拟来分析船只周围的螺旋桨流场.

3.The propeller flow field 螺旋桨流场 can significantly affect the stability of the drone.

对无人机的稳定性有显著影响的因素是螺旋桨流场.

4.The design of the aircraft was optimized for better performance in the propeller flow field 螺旋桨流场.

这架飞机的设计经过优化,以在更好的性能下工作于螺旋桨流场.

5.Researchers conducted experiments to measure the turbulence in the propeller flow field 螺旋桨流场.

研究人员进行了实验,以测量螺旋桨流场中的湍流.

作文

The study of fluid dynamics is crucial for understanding various engineering applications, especially in the field of aerodynamics. One of the most significant components in this area is the propeller flow field, which refers to the flow of air or water around a rotating propeller. This concept is fundamental in the design and optimization of aircraft, ships, and submarines. Understanding the propeller flow field can lead to improved performance and efficiency of these vehicles.When a propeller spins, it generates thrust by accelerating the surrounding fluid. The propeller flow field describes how this fluid moves in response to the rotating blades. It is characterized by complex patterns of vortices and streams that are influenced by the shape, size, and pitch of the propeller blades. Engineers use computational fluid dynamics (CFD) simulations to analyze these flow fields, allowing them to predict how changes in design will affect performance.One of the key aspects of the propeller flow field is the formation of vortices. As the propeller blades rotate, they create low-pressure areas behind them, causing the fluid to swirl around. This vortex formation is essential for generating lift and thrust. However, excessive vortex shedding can lead to inefficiencies and noise, which are critical factors in aircraft design. Therefore, a thorough understanding of the propeller flow field helps engineers to minimize these negative effects while maximizing thrust.Moreover, the propeller flow field is not static; it changes with different operating conditions such as speed, altitude, and fluid density. For instance, at higher speeds, the flow may become turbulent, affecting the overall performance of the propeller. Engineers must consider these variables when designing propellers for specific applications, making the study of the propeller flow field an ongoing process.In addition to traditional methods of analysis, advancements in technology have introduced new tools for studying the propeller flow field. Techniques such as particle image velocimetry (PIV) allow researchers to visualize the flow patterns in real-time. This technology provides valuable insights into the behavior of the flow field around the propeller, enabling more accurate predictions of performance.The implications of understanding the propeller flow field extend beyond just performance improvements. They also contribute to safety and reliability in aviation and maritime operations. By optimizing the design of propellers based on flow field analysis, engineers can reduce the risk of failure under various operating conditions.In conclusion, the propeller flow field is a critical concept in fluid dynamics that plays a vital role in the design and efficiency of propellers used in various applications. A comprehensive understanding of this flow field allows engineers to enhance performance, reduce noise, and improve safety. As technology continues to evolve, the methods for analyzing the propeller flow field will only become more sophisticated, leading to even greater advancements in the field of aerodynamics and hydrodynamics.

流体动力学的研究对于理解各种工程应用至关重要,尤其是在空气动力学领域。其中一个最重要的组成部分是螺旋桨流场,它指的是围绕旋转螺旋桨的空气或水的流动。这个概念在飞机、船舶和潜艇的设计和优化中是基础性的。理解螺旋桨流场可以提高这些交通工具的性能和效率。当螺旋桨旋转时,通过加速周围的流体产生推力。螺旋桨流场描述了这种流体如何响应旋转的叶片而移动。其特征是由涡旋和流线组成的复杂模式,这些模式受到螺旋桨叶片的形状、大小和螺距的影响。工程师使用计算流体动力学(CFD)模拟来分析这些流场,从而预测设计变化将如何影响性能。螺旋桨流场的一个关键方面是涡旋的形成。当螺旋桨叶片旋转时,它们在后面产生低压区域,导致流体旋转。这种涡旋的形成对产生升力和推力至关重要。然而,过度的涡旋脱落可能导致效率低下和噪音,这些都是飞机设计中的关键因素。因此,全面理解螺旋桨流场有助于工程师最大限度地减少这些负面影响,同时最大化推力。此外,螺旋桨流场并不是静态的;它会随着不同的操作条件如速度、高度和流体密度而变化。例如,在更高的速度下,流动可能变得湍流,从而影响螺旋桨的整体性能。工程师在为特定应用设计螺旋桨时,必须考虑这些变量,使得对螺旋桨流场的研究成为一个持续的过程。除了传统的分析方法,技术的进步还引入了新的工具来研究螺旋桨流场。诸如粒子图像测速(PIV)等技术使研究人员能够实时可视化流动模式。这项技术提供了关于螺旋桨周围流场行为的宝贵见解,使得对性能的预测更加准确。理解螺旋桨流场的意义不仅限于性能的提升。它们还为航空和海事操作的安全性和可靠性做出了贡献。通过基于流场分析优化螺旋桨的设计,工程师可以减少在各种操作条件下失败的风险。总之,螺旋桨流场是流体动力学中的一个关键概念,在各种应用中螺旋桨的设计和效率中发挥着重要作用。全面理解这一流场使工程师能够提高性能、降低噪音并改善安全性。随着技术的不断发展,分析螺旋桨流场的方法将变得愈加复杂,从而在空气动力学和水动力学领域带来更大的进步。

相关单词

propeller

propeller详解:怎么读、什么意思、用法