modulo

简明释义

[ˈmɒdjʊləʊ][ˈmɑːdjəˌloʊ]

prep. 以……为模

adj. 按模的

英英释义

In mathematics, 'modulo' refers to the operation of finding the remainder after division of one number by another.

在数学中,'modulo' 指的是在一个数除以另一个数后找到余数的运算。

It is often used in the context of modular arithmetic, where numbers wrap around upon reaching a certain value.

它通常用于模运算的上下文中,在这个上下文中,数字在达到某个值时会重新开始。

单词用法

a mod b

a 对 b 取模

x modulo y

x 模 y

modulo operation

模运算

modulo n

模 n

modulo arithmetic

模算术

modulo reduction

模约简

同义词

modulus

模数

In mathematics, the modulus operation finds the remainder of a division.

在数学中,模数运算找到除法的余数。

remainder

余数

The remainder is often used in programming to determine if a number is even or odd.

余数通常用于编程中判断一个数字是偶数还是奇数。

反义词

absolute

绝对的

The absolute value of a number is always non-negative.

一个数字的绝对值总是非负的。

unconditional

无条件的

He made an unconditional promise to help her.

他做出了一个无条件的承诺来帮助她。

例句

1.The analysis and example indicted that the design method is feasible. It develops the way of design modulo-N counter with MSI.

分析与设计举例表明该设计方法是可行的,它拓宽了采用MSI设计任意进制计数器的途径。

2.Your best bet in situations like this is to operate on absolute values when doing modulo operators if you want basic integer division.

在这种情况下你最好的选择是使用绝对值做模运算符时如果你想基本整数的除法。

3.Finally, through the analysis and comparison with other kind of modulo adders, we draw the conclusion that the performance of the new modulo adder is better.

最后,通过与其它模加法器在结构以及算法等方面进行分析比较,表明本文所设计的模加法器性能优异。

4.Polynomial modulo reduction algorithms are one of the fundamental issues of computer algebra, and widely used in coding algorithms and cryptographic system design.

多项式模归约算法是计算机代数中的基本问题之一,在编码算法和密码体制设计中有着广泛应用。

5.If it is already there then it doesn't matter, modulo a possible buffer overrun, if not then you avoided your program using bad data.

如果它已经存在并没关系,模可能的缓冲区溢出,如果没有的话,你可以避免你的程序使用错误的数据。

6.Group of units of order 2pq of modulo n residue class ring.

单位群的阶为2pq的模n剩余类环。

7.In Chapter 4, several problems are involved in linear codes over finite fields with two dimensional modulo metrics.

在第四章中,考虑在两种二维距离之下有限域上线性码的几个问题。

8.To calculate the time after adding hours, you can use the modulo operation.

要计算添加小时后的时间,你可以使用运算。

9.The formula for finding leap years involves using modulo to check divisibility.

查找闰年的公式涉及使用来检查可被整除性。

10.In programming, you often use modulo to check if a number is even or odd.

在编程中,你经常使用来检查一个数字是偶数还是奇数。

11.When you divide 20 by 6, the remainder is 2, which can be expressed as 20 modulo 6.

当你用20除以6时,余数是2,可以表示为20 6。

12.The result of 10 modulo 3 is 1.

10 3 的结果是 1。

作文

In mathematics, the concept of modular arithmetic plays a significant role in various fields, including computer science, cryptography, and number theory. One of the key terms associated with this concept is modulo, which refers to the operation of finding the remainder when one integer is divided by another. For instance, when we say 'a is congruent to b modulo n', we mean that the difference between a and b is an integer multiple of n. This idea can be quite useful in solving problems that involve periodicity or cycles.To better understand the application of modulo, let’s consider a simple example involving clocks. A standard clock has 12 hours, and when it reaches 12, it resets back to 1. If we want to calculate what time it will be after 15 hours from 10 o'clock, we can use the modulo operation. We add 15 to 10, which gives us 25. Then, we apply modulo 12 to find the equivalent time on the clock. So, 25 modulo 12 equals 1, meaning that 15 hours after 10 o'clock will be 1 o'clock.This property of modulo arithmetic can also be observed in programming. Many programming languages include a modulo operator, often represented by the percent sign (%). This operator allows programmers to perform calculations that require wrapping around values. For example, if you are creating a game that involves moving a character around a circular track, you might use the modulo operator to ensure that the character's position stays within the bounds of the track.Moreover, modulo can be beneficial in cryptography, where it is used in algorithms that secure data transmission. The RSA encryption algorithm, for example, relies heavily on the properties of prime numbers and modulo operations to encrypt and decrypt messages securely. Understanding how modulo works can help one grasp the foundational principles of such encryption methods.In conclusion, the term modulo encapsulates a fundamental concept in mathematics that extends beyond mere number crunching. It serves as a powerful tool in various disciplines, helping to solve complex problems and enabling secure communication. By understanding modulo arithmetic, one can appreciate its applications in everyday life, technology, and even art, where patterns and repetitions are often governed by modular relationships. Therefore, mastering the concept of modulo is essential for anyone looking to deepen their knowledge in mathematics and its practical applications.

在数学中,模运算的概念在多个领域中发挥着重要作用,包括计算机科学、密码学和数论。与这一概念相关的一个关键术语是modulo,它指的是找到一个整数除以另一个整数时的余数。例如,当我们说“a 模 b modulo n”时,我们的意思是a和b之间的差是n的整数倍。这个想法在解决涉及周期性或循环的问题时非常有用。为了更好地理解modulo的应用,让我们考虑一个关于时钟的简单例子。标准时钟有12个小时,当它到达12时,会重置回1。如果我们想计算从10点起经过15小时会是什么时间,我们可以使用modulo运算。我们将15加到10上,得到25。然后,我们对12应用modulo来找出时钟上的等效时间。因此,25 modulo 12等于1,这意味着从10点起经过15小时将是1点。这种modulo运算的特性也可以在编程中观察到。许多编程语言都包含一个modulo运算符,通常用百分号(%)表示。这个运算符允许程序员执行需要环绕值的计算。例如,如果你正在创建一个涉及在圆形轨道上移动角色的游戏,你可能会使用modulo运算符来确保角色的位置保持在轨道的边界内。此外,modulo在密码学中也很有用,它被用于保护数据传输的算法中。例如,RSA加密算法就高度依赖于素数的性质和modulo运算来安全地加密和解密消息。理解modulo的工作原理可以帮助人们掌握这些加密方法的基础原则。总之,术语modulo概括了数学中的一个基本概念,超越了单纯的数字运算。它作为一个强大的工具在各个学科中发挥作用,帮助解决复杂问题并促进安全通信。通过理解modulo运算,人们可以欣赏其在日常生活、技术甚至艺术中的应用,其中模式和重复往往受到模关系的支配。因此,掌握modulo的概念对于任何希望深入了解数学及其实际应用的人来说都是至关重要的。