parasitic parameter

简明释义

寄生参数

英英释义

A parasitic parameter refers to an unintended or secondary effect in a circuit or system that can influence its performance, often arising from the physical properties of components such as capacitance, inductance, or resistance.

寄生参数是指在电路或系统中由于组件的物理特性(如电容、电感或电阻)而产生的意外或次要效应,这些效应可能影响其性能。

例句

1.The analysis showed that the parasitic parameter 寄生参数 of the capacitor significantly affected the overall performance of the filter.

分析显示,电容器的寄生参数显著影响了滤波器的整体性能。

2.The parasitic parameter 寄生参数 can lead to unexpected resonances in RF circuits.

在射频电路中,寄生参数可能导致意外的共振现象。

3.Engineers often use simulation tools to estimate the impact of parasitic parameter 寄生参数 on circuit behavior.

工程师通常使用仿真工具来估算寄生参数对电路行为的影响。

4.To improve the efficiency of the amplifier, we must reduce the parasitic parameter 寄生参数 associated with the transistors.

为了提高放大器的效率,我们必须减少与晶体管相关的寄生参数

5.In high-frequency circuit design, minimizing the effect of parasitic parameter 寄生参数 is crucial for maintaining signal integrity.

在高频电路设计中,最小化< span>寄生参数的影响对于保持信号完整性至关重要。

作文

In the field of electrical engineering, the concept of parasitic parameter is crucial for understanding how real-world components behave compared to their ideal models. These parameters are unintended characteristics that arise from the physical properties of components and can significantly affect the performance of electronic circuits. For instance, when designing a circuit, engineers often rely on idealized models that assume perfect conditions. However, in reality, every component has certain parasitic parameters such as resistance, capacitance, and inductance that can introduce errors and inefficiencies into the system.To illustrate this point, consider a simple RC (resistor-capacitor) circuit. In theory, the behavior of this circuit can be easily predicted using Ohm's law and the principles of capacitance. However, when an engineer builds the actual circuit, they must account for parasitic parameters that may not have been considered in the initial design. For example, the wires used to connect the components may have their own resistance and inductance, which can alter the timing and response of the circuit. Similarly, the physical layout of the components can introduce stray capacitance, affecting signal integrity.The impact of parasitic parameters becomes even more pronounced in high-frequency applications. As the frequency of operation increases, the effects of these parameters can lead to significant deviations from expected behavior. This is particularly important in radio frequency (RF) circuits, where the small size of components and the high speeds involved make parasitic parameters a critical factor in design. Engineers must employ various techniques, such as careful layout design and the use of specialized simulation software, to mitigate the effects of these unwanted characteristics.Moreover, the measurement and analysis of parasitic parameters are essential skills for engineers. Techniques such as network analyzers and time-domain reflectometry can be employed to accurately assess these parameters in real circuits. Understanding how to measure and interpret the influence of parasitic parameters allows engineers to make informed decisions during the design process, ultimately leading to more reliable and efficient electronic systems.In conclusion, the term parasitic parameter refers to the unintended effects that arise from the physical properties of electronic components, which can significantly impact circuit performance. Recognizing and addressing these parameters is vital for engineers to ensure that their designs function as intended in real-world applications. As technology continues to advance and components become smaller and more complex, the importance of understanding parasitic parameters will only grow, making it a fundamental aspect of modern electrical engineering education and practice.

在电气工程领域,寄生参数的概念对于理解现实世界组件的行为与其理想模型之间的差异至关重要。这些参数是由于组件的物理特性而产生的意外特征,可能会显著影响电子电路的性能。例如,在设计电路时,工程师通常依赖于假设完美条件的理想化模型。然而,在现实中,每个组件都有某些寄生参数,如电阻、电容和电感,这些都可能引入误差和低效。为了说明这一点,考虑一个简单的RC(电阻-电容)电路。理论上,这个电路的行为可以通过欧姆定律和电容原理轻松预测。然而,当工程师构建实际电路时,他们必须考虑到在初始设计中可能未考虑的寄生参数。例如,用于连接组件的导线可能具有自身的电阻和电感,这可能改变电路的时序和响应。同样,组件的物理布局可能会引入杂散电容,从而影响信号完整性。在高频应用中,寄生参数的影响变得更加明显。随着操作频率的增加,这些参数的影响可能导致与预期行为的显著偏差。这在射频(RF)电路中尤为重要,因为组件的小型化和高速运作使得寄生参数成为设计中的关键因素。工程师必须采用各种技术,如精心的布局设计和使用专业的仿真软件,以减轻这些不必要特性的影响。此外,测量和分析寄生参数是工程师必备的重要技能。可以使用网络分析仪和时间域反射测量等技术来准确评估实际电路中的这些参数。理解如何测量和解释寄生参数的影响使工程师能够在设计过程中做出明智的决策,最终导致更可靠和高效的电子系统。总之,术语寄生参数指的是由于电子组件的物理特性而产生的意外效应,这些效应可能对电路性能产生显著影响。认识和解决这些参数对于工程师确保其设计在现实应用中按预期功能至关重要。随着技术的不断进步和组件变得越来越小、越来越复杂,理解寄生参数的重要性只会增加,使其成为现代电气工程教育和实践的基本方面。

相关单词

parasitic

parasitic详解:怎么读、什么意思、用法