parameter non-uniform rate
简明释义
参数不均匀率
英英释义
例句
1.The analysis showed that the parameter non-uniform rate 参数非均匀速率 significantly affected the system's performance.
分析显示,参数非均匀速率 parameter non-uniform rate 显著影响了系统的性能。
2.To optimize the algorithm, we need to adjust the parameter non-uniform rate 参数非均匀速率 based on the input data.
为了优化算法,我们需要根据输入数据调整 参数非均匀速率 parameter non-uniform rate。
3.In the experiment, the parameter non-uniform rate 参数非均匀速率 was varied to observe its effects on the output.
在实验中,通过改变 参数非均匀速率 parameter non-uniform rate 来观察其对输出的影响。
4.We found that a higher parameter non-uniform rate 参数非均匀速率 led to more unpredictable results.
我们发现,更高的 参数非均匀速率 parameter non-uniform rate 导致结果更加不可预测。
5.Adjusting the parameter non-uniform rate 参数非均匀速率 can help improve the accuracy of our model.
调整 参数非均匀速率 parameter non-uniform rate 可以帮助提高我们模型的准确性。
作文
In the world of data analysis and modeling, understanding various parameters is crucial for accurate results. One such important concept is the parameter non-uniform rate, which refers to the varying rates at which different parameters change or are applied within a given system. This concept plays a significant role in fields such as economics, engineering, and environmental science, where multiple factors can influence outcomes in non-linear ways.To illustrate the importance of the parameter non-uniform rate, consider a financial model that predicts the growth of an investment portfolio. In this scenario, different assets may have varying rates of return based on market conditions, interest rates, and economic indicators. If an analyst assumes a uniform rate of return across all assets, they may overlook critical fluctuations that could significantly impact the overall portfolio performance. By recognizing the parameter non-uniform rate, the analyst can create a more nuanced model that better reflects reality, ultimately leading to more informed investment decisions.Similarly, in engineering, the parameter non-uniform rate can affect the design and functionality of products. For instance, when designing a bridge, engineers must account for various loads, materials, and environmental factors that do not change uniformly over time. The stress on different parts of the bridge may vary due to traffic patterns, weather conditions, and structural integrity. Understanding these non-uniform rates allows engineers to optimize their designs for safety and longevity, ensuring that the bridge can withstand the diverse forces acting upon it.Environmental science also benefits from the concept of parameter non-uniform rate. In studying climate change, researchers analyze numerous variables, such as temperature, precipitation, and carbon emissions. These factors do not change at a consistent rate; instead, they exhibit complex interactions that can lead to unpredictable outcomes. By incorporating the parameter non-uniform rate into their models, scientists can better predict future climate scenarios and develop effective strategies for mitigation and adaptation.In conclusion, the parameter non-uniform rate is a vital concept that highlights the variability of different factors within a system. Whether in finance, engineering, or environmental science, acknowledging the non-uniformity of parameters leads to more accurate models and better decision-making. As we continue to navigate complex systems in various fields, understanding and applying the idea of parameter non-uniform rate will be essential for achieving optimal outcomes and addressing the challenges we face in today's world.
在数据分析和建模的世界中,理解各种参数对于准确结果至关重要。其中一个重要的概念是参数非均匀速率,它指的是在给定系统中,不同参数变化或应用的速率各不相同。这个概念在经济学、工程学和环境科学等领域发挥着重要作用,因为多个因素可以以非线性方式影响结果。为了说明参数非均匀速率的重要性,考虑一个预测投资组合增长的金融模型。在这种情况下,不同的资产可能会根据市场条件、利率和经济指标具有不同的回报率。如果分析师假设所有资产的回报率是均匀的,他们可能会忽视可能显著影响整体投资组合表现的关键波动。通过认识到参数非均匀速率,分析师可以创建一个更细致的模型,更好地反映现实,从而做出更明智的投资决策。同样,在工程领域,参数非均匀速率可能影响产品的设计和功能。例如,在设计一座桥梁时,工程师必须考虑各种荷载、材料和环境因素,这些因素不会随时间均匀变化。桥梁不同部分的应力可能由于交通模式、天气条件和结构完整性而变化。理解这些非均匀速率使工程师能够优化他们的设计,以确保安全和耐久性,确保桥梁能够承受作用于其上的多种力量。环境科学也受益于参数非均匀速率的概念。在研究气候变化时,研究人员分析许多变量,如温度、降水量和碳排放。这些因素并不是以一致的速度变化;相反,它们表现出复杂的相互作用,可能导致不可预测的结果。通过将参数非均匀速率纳入他们的模型,科学家们可以更好地预测未来的气候情景,并制定有效的减缓和适应策略。总之,参数非均匀速率是一个重要的概念,强调了系统内不同因素的可变性。无论是在金融、工程还是环境科学中,承认参数的非均匀性有助于更准确的模型和更好的决策。随着我们继续在各个领域应对复杂系统,理解和应用参数非均匀速率的思想将对实现最佳结果和解决当今世界面临的挑战至关重要。